These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34122804)
21. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery. Ma S; Zhou J; Wali AR; He Y; Xu X; Tang JZ; Gu Z J Mater Sci Mater Med; 2015 Aug; 26(8):219. PubMed ID: 26238777 [TBL] [Abstract][Full Text] [Related]
22. Intracellularly Actuated Quantum Dot-Peptide-Doxorubicin Nanobioconjugates for Controlled Drug Delivery via the Endocytic Pathway. Sangtani A; Petryayeva E; Wu M; Susumu K; Oh E; Huston AL; Lasarte-Aragones G; Medintz IL; Algar WR; Delehanty JB Bioconjug Chem; 2018 Jan; 29(1):136-148. PubMed ID: 29191007 [TBL] [Abstract][Full Text] [Related]
23. Combination chemotherapy using core-shell nanoparticles through the self-assembly of HPMA-based copolymers and degradable polyester. Jäger E; Jäger A; Chytil P; Etrych T; Ríhová B; Giacomelli FC; Stěpánek P; Ulbrich K J Control Release; 2013 Jan; 165(2):153-61. PubMed ID: 23178950 [TBL] [Abstract][Full Text] [Related]
24. Determination of the Photoisomerization Quantum Yield of a Hydrazone Photoswitch. Jeong M; Park J; Lee K; Kwon S J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188132 [TBL] [Abstract][Full Text] [Related]
25. Self-assembled photosensitizer-conjugated nanoparticles for targeted photodynamic therapy. Zhao L; Kim TH; Huh KM; Kim HW; Kim SY J Biomater Appl; 2013 Sep; 28(3):434-47. PubMed ID: 22983021 [TBL] [Abstract][Full Text] [Related]
26. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin. Liao J; Zheng H; Fei Z; Lu B; Zheng H; Li D; Xiong X; Yi Y Int J Biol Macromol; 2018 Jul; 113():737-747. PubMed ID: 29505869 [TBL] [Abstract][Full Text] [Related]
27. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Zhao Y; Houston ZH; Simpson JD; Chen L; Fletcher NL; Fuchs AV; Blakey I; Thurecht KJ Mol Pharm; 2017 Oct; 14(10):3539-3549. PubMed ID: 28880092 [TBL] [Abstract][Full Text] [Related]
28. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Yildiz T; Gu R; Zauscher S; Betancourt T Int J Nanomedicine; 2018; 13():6961-6986. PubMed ID: 30464453 [TBL] [Abstract][Full Text] [Related]
29. Controlled Multi-functionalization Facilitates Targeted Delivery of Nanoparticles to Cancer Cells. Hudlikar MS; Li X; Gagarinov IA; Kolishetti N; Wolfert MA; Boons GJ Chemistry; 2016 Jan; 22(4):1415-23. PubMed ID: 26683093 [TBL] [Abstract][Full Text] [Related]
30. A multi-stage single photochrome system for controlled photoswitching responses. Stricker F; Sanchez DM; Raucci U; Dolinski ND; Zayas MS; Meisner J; Hawker CJ; Martínez TJ; Read de Alaniz J Nat Chem; 2022 Aug; 14(8):942-948. PubMed ID: 35681046 [TBL] [Abstract][Full Text] [Related]
31. Photo-inducible crosslinked nanoassemblies for pH-controlled drug release. Dickerson M; Winquist N; Bae Y Pharm Res; 2014 May; 31(5):1254-63. PubMed ID: 24254196 [TBL] [Abstract][Full Text] [Related]
32. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. Kievit FM; Wang FY; Fang C; Mok H; Wang K; Silber JR; Ellenbogen RG; Zhang M J Control Release; 2011 May; 152(1):76-83. PubMed ID: 21277920 [TBL] [Abstract][Full Text] [Related]
33. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Baranello MP; Bauer L; Benoit DS Biomacromolecules; 2014 Jul; 15(7):2629-41. PubMed ID: 24955779 [TBL] [Abstract][Full Text] [Related]
34. Ultrafast processes triggered by one- and two-photon excitation of a photochromic and luminescent hydrazone. Iagatti A; Shao B; Credi A; Ventura B; Aprahamian I; Di Donato M Beilstein J Org Chem; 2019; 15():2438-2446. PubMed ID: 31666878 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery. Tam YT; To KK; Chow AH Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466 [TBL] [Abstract][Full Text] [Related]
36. Redox and pH dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for intracellular delivery of doxorubicin. Hu W; Qiu L; Cheng L; Hu Q; Liu Y; Hu Z; Chen D; Cheng L Acta Biomater; 2016 May; 36():241-53. PubMed ID: 26995505 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and Characterization of Dual-Sensitive Fluorescent Nanogels for Enhancing Drug Delivery and Tracking Intracellular Drug Delivery. Wu SY; Debele TA; Kao YC; Tsai HC Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28534813 [TBL] [Abstract][Full Text] [Related]
38. Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin. Nguyen CT; Tran TH; Amiji M; Lu X; Kasi RM Nanomedicine; 2015 Nov; 11(8):2071-82. PubMed ID: 26169153 [TBL] [Abstract][Full Text] [Related]
39. Platelet extracellular vesicles are efficient delivery vehicles of doxorubicin, an anti-cancer drug: preparation and in vitro characterization. Wu YW; Lee DY; Lu YL; Delila L; Nebie O; Barro L; Changou CA; Lu LS; Goubran H; Burnouf T Platelets; 2023 Dec; 34(1):2237134. PubMed ID: 37580876 [TBL] [Abstract][Full Text] [Related]
40. Hydrolytically degradable polymer micelles for drug delivery: a SAXS/SANS kinetic study. Filippov SK; Franklin JM; Konarev PV; Chytil P; Etrych T; Bogomolova A; Dyakonova M; Papadakis CM; Radulescu A; Ulbrich K; Stepanek P; Svergun DI Biomacromolecules; 2013 Nov; 14(11):4061-70. PubMed ID: 24083567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]