These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34122816)

  • 21. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.
    Sapi A; Liu F; Cai X; Thompson CM; Wang H; An K; Krier JM; Somorjai GA
    Nano Lett; 2014 Nov; 14(11):6727-30. PubMed ID: 25337984
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Shi Z; Liu J; Xi H; Wu P; Pan N; You T; Gao Y; Yin P
    Phys Chem Chem Phys; 2022 Jun; 24(23):14545-14551. PubMed ID: 35666149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Approach to Simultaneous
    de Alwis C; Leftwich TR; Perrine KA
    Langmuir; 2020 Apr; 36(13):3404-3414. PubMed ID: 32175739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding Surface Modulation to Improve the Photo/Electrocatalysts for Water Oxidation/Reduction.
    Cho Y; Le TA; Lee H
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving Artificial Photosynthesis over Carbon Nitride by Gas-Liquid-Solid Interface Management for Full Light-Induced CO
    Xia Y; Xiao K; Cheng B; Yu J; Jiang L; Antonietti M; Cao S
    ChemSusChem; 2020 Apr; 13(7):1730-1734. PubMed ID: 31943838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium-Air Batteries Catalyzed by Gold/Manganese-Dioxide.
    Wang G; Huang L; Liu S; Xie J; Zhang S; Zhu P; Cao G; Zhao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23876-84. PubMed ID: 26466174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic Liquid-Liquid Interface: Applying a Spinning Interfacial Microreactor to Actively Converge Biphasic Reactants for the Enhanced Interfacial Reaction.
    Ng LS; Chong C; Lok XY; Pereira V; Ang ZZ; Han X; Li H; Lee HK
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):45005-45012. PubMed ID: 36162132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of air-water interface adsorption and reactions between trace gaseous organic and oxidant compounds.
    Karre AV; Valsaraj KT; Vasagar V
    Sci Total Environ; 2023 May; 873():162367. PubMed ID: 36822420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface.
    Lee SW; Kim H; Park JY
    Nano Lett; 2023 Jun; 23(11):5373-5380. PubMed ID: 36930862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser-Induced Graphene Arrays-Based Three-Phase Interface Enzyme Electrode for Reliable Bioassays.
    Zhang M; Zhang J; Ding Z; Wang H; Huang L; Feng X
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36648812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential of levitated drops to serve as microreactors for biophysical measurements.
    Scheeline A; Behrens RL
    Biophys Chem; 2012 May; 165-166():1-12. PubMed ID: 22498502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Electrocatalytic N
    Wei X; Pu M; Jin Y; Wessling M
    ACS Appl Mater Interfaces; 2021 May; 13(18):21411-21425. PubMed ID: 33909402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Modular Millifluidic Platform for the Synthesis of Iron Oxide Nanoparticles with Control over Dissolved Gas and Flow Configuration.
    Panariello L; Wu G; Besenhard MO; Loizou K; Storozhuk L; Thanh NTK; Gavriilidis A
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32106389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient electro-generation of H
    An J; Li N; Zhao Q; Qiao Y; Wang S; Liao C; Zhou L; Li T; Wang X; Feng Y
    Water Res; 2019 Nov; 164():114933. PubMed ID: 31382153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde Oxidation.
    Xu J; Xiao X; Zhang Z; Wu Y; Boyle DT; Lee HK; Huang W; Li Y; Wang H; Li J; Zhu Y; Chen B; Mitch W; Cui Y
    Nano Lett; 2020 Dec; 20(12):8719-8724. PubMed ID: 33201720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles.
    Wang H; Sapi A; Thompson CM; Liu F; Zherebetskyy D; Krier JM; Carl LM; Cai X; Wang LW; Somorjai GA
    J Am Chem Soc; 2014 Jul; 136(29):10515-20. PubMed ID: 24992695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Boosted Oxygen Reduction Reaction Activity by Tuning the Underwater Wetting State of the Superhydrophobic Electrode.
    Wang P; Hayashi T; Meng Q; Wang Q; Liu H; Hashimoto K; Jiang L
    Small; 2017 Jan; 13(4):. PubMed ID: 27510500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water.
    Liu B; Zhan Y; Xie R; Huang H; Li K; Zeng Y; Shrestha RP; Kim Oanh NT; Winijkul E
    Chemosphere; 2019 Oct; 233():754-761. PubMed ID: 31200135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.