These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34122957)
1. Crystallographic facet selective HER catalysis: exemplified in FeP and NiP Owens-Baird B; Sousa JPS; Ziouani Y; Petrovykh DY; Zarkevich NA; Johnson DD; Kolen'ko YV; Kovnir K Chem Sci; 2020 Apr; 11(19):5007-5016. PubMed ID: 34122957 [TBL] [Abstract][Full Text] [Related]
2. Cationic Vacancy Defects in Iron Phosphide: A Promising Route toward Efficient and Stable Hydrogen Evolution by Electrochemical Water Splitting. Kwong WL; Gracia-Espino E; Lee CC; Sandström R; Wågberg T; Messinger J ChemSusChem; 2017 Nov; 10(22):4544-4551. PubMed ID: 28980427 [TBL] [Abstract][Full Text] [Related]
3. Catalytic decomposition of toxic chemicals over iron group metals supported on carbon nanotubes. Li L; Chen C; Chen L; Zhu Z; Hu J Environ Sci Technol; 2014 Mar; 48(6):3372-7. PubMed ID: 24568676 [TBL] [Abstract][Full Text] [Related]
4. Designing Hybrid NiP Wu MY; Da PF; Zhang T; Mao J; Liu H; Ling T ACS Appl Mater Interfaces; 2018 May; 10(21):17896-17902. PubMed ID: 29741363 [TBL] [Abstract][Full Text] [Related]
5. Modulating the electronic structure of ternary transition metal phosphide for enhanced hydrogen evolution activity. Dong S; Tang H; Wang K; Zheng Q; Huang T Dalton Trans; 2022 Dec; 51(48):18722-18733. PubMed ID: 36449270 [TBL] [Abstract][Full Text] [Related]
6. Tunable Synthesis of Metal-Rich and Phosphorus-Rich Nickel Phosphides and Their Comparative Evaluation as Hydrogen Evolution Electrocatalysts. Liyanage IA; Flores AV; Gillan EG Inorg Chem; 2023 Mar; 62(12):4947-4959. PubMed ID: 36898368 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen evolution reaction activity related to the facet-dependent electrocatalytic performance of NiCoP from first principles. Mou J; Gao Y; Wang J; Ma J; Ren H RSC Adv; 2019 Apr; 9(21):11755-11761. PubMed ID: 35516993 [TBL] [Abstract][Full Text] [Related]
8. Periodically ordered mesoporous iron phosphide for highly efficient electrochemical hydrogen evolution. Zhang C; Gao Z; Zhao L; Ai J; Li N; Li X J Colloid Interface Sci; 2020 Jun; 569():68-75. PubMed ID: 32097802 [TBL] [Abstract][Full Text] [Related]
9. Engineering In-Plane Nickel Phosphide Heterointerfaces with Interfacial sp HP Hybridization for Highly Efficient and Durable Hydrogen Evolution at 2 A cm Zhou Q; Liao L; Bian Q; Yu F; Li D; Zeng J; Zhang L; Wang H; Tang D; Zhou H; Ren Z Small; 2022 Jan; 18(4):e2105642. PubMed ID: 34825490 [TBL] [Abstract][Full Text] [Related]
10. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Khalafallah D; Zhi M; Hong Z Top Curr Chem (Cham); 2019 Oct; 377(6):29. PubMed ID: 31605243 [TBL] [Abstract][Full Text] [Related]
11. Unusual Catalytic Properties of High-Energetic-Facet Polar Metal Oxides. Li Y; Tsang SCE Acc Chem Res; 2021 Jan; 54(2):366-378. PubMed ID: 33382242 [TBL] [Abstract][Full Text] [Related]
12. Oxide Nanocrystal Model Catalysts. Huang W Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790 [TBL] [Abstract][Full Text] [Related]
13. Interfacial Electron Transfer of Ni Liu T; Li A; Wang C; Zhou W; Liu S; Guo L Adv Mater; 2018 Nov; 30(46):e1803590. PubMed ID: 30285280 [TBL] [Abstract][Full Text] [Related]
14. Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis. Li X; Liu W; Zhang M; Zhong Y; Weng Z; Mi Y; Zhou Y; Li M; Cha JJ; Tang Z; Jiang H; Li X; Wang H Nano Lett; 2017 Mar; 17(3):2057-2063. PubMed ID: 28186769 [TBL] [Abstract][Full Text] [Related]
15. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Zhang H; Jin M; Xiong Y; Lim B; Xia Y Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781 [TBL] [Abstract][Full Text] [Related]
16. Flower-Like Nickel Phosphide Microballs Assembled by Nanoplates with Exposed High-Energy (0 0 1) Facets: Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Wang H; Xie Y; Cao H; Li Y; Li L; Xu Z; Wang X; Xiong N; Pan K ChemSusChem; 2017 Dec; 10(24):4899-4908. PubMed ID: 28971593 [TBL] [Abstract][Full Text] [Related]
17. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. Callejas JF; McEnaney JM; Read CG; Crompton JC; Biacchi AJ; Popczun EJ; Gordon TR; Lewis NS; Schaak RE ACS Nano; 2014 Nov; 8(11):11101-7. PubMed ID: 25250976 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms for hydrogen evolution on transition metal phosphide catalysts and a comparison to Pt(111). Li C; Gao H; Wan W; Mueller T Phys Chem Chem Phys; 2019 Nov; 21(44):24489-24498. PubMed ID: 31687692 [TBL] [Abstract][Full Text] [Related]
19. Distinct Crystal-Facet-Dependent Behaviors for Single-Atom Palladium-On-Ceria Catalysts: Enhanced Stabilization and Catalytic Properties. Hu B; Sun K; Zhuang Z; Chen Z; Liu S; Cheong WC; Chen C; Hu M; Cao X; Ma J; Tu R; Zheng X; Xiao H; Chen X; Cui Y; Peng Q; Chen C; Li Y Adv Mater; 2022 Apr; 34(16):e2107721. PubMed ID: 35142396 [TBL] [Abstract][Full Text] [Related]
20. Self-Supported FeP-CoMoP Hierarchical Nanostructures for Efficient Hydrogen Evolution. Wang Q; Wang Z; Zhao Y; Li F; Xu L; Wang X; Jiao H; Chen Y Chem Asian J; 2020 May; 15(10):1590-1597. PubMed ID: 32227621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]