These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34122962)

  • 1. Asymmetric synthesis of primary amines catalyzed by thermotolerant fungal reductive aminases.
    Mangas-Sanchez J; Sharma M; Cosgrove SC; Ramsden JI; Marshall JR; Thorpe TW; Palmer RB; Grogan G; Turner NJ
    Chem Sci; 2020 May; 11(19):5052-5057. PubMed ID: 34122962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Reductive Aminases for Asymmetric Synthesis of Enantiopure Rasagiline.
    Zhang K; He Y; Zhu J; Zhang Q; Tang L; Cui L; Feng Y
    Front Bioeng Biotechnol; 2021; 9():798147. PubMed ID: 35004654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of chiral amines using redox biocatalysis.
    Grogan G
    Curr Opin Chem Biol; 2018 Apr; 43():15-22. PubMed ID: 29100099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [NAD(P)H-dependent oxidoreductases for synthesis of chiral amines by asymmetric reductive amination of ketones].
    Cheng F; Li Q; Li H; Xue Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1794-1816. PubMed ID: 33164457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate.
    Knaus T; Corrado ML; Mutti FG
    ACS Catal; 2022 Dec; 12(23):14459-14475. PubMed ID: 36504913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD(P)H-Dependent Dehydrogenases for the Asymmetric Reductive Amination of Ketones: Structure, Mechanism, Evolution and Application.
    Sharma M; Mangas-Sanchez J; Turner NJ; Grogan G
    Adv Synth Catal; 2017 Jun; 359(12):2011-2025. PubMed ID: 30008635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.
    Knaus T; Böhmer W; Mutti FG
    Green Chem; 2017 Jan; 19(2):453-463. PubMed ID: 28663713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reductive aminase from Aspergillus oryzae.
    Aleku GA; France SP; Man H; Mangas-Sanchez J; Montgomery SL; Sharma M; Leipold F; Hussain S; Grogan G; Turner NJ
    Nat Chem; 2017 Oct; 9(10):961-969. PubMed ID: 28937665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalysis in Drug Design: Engineered Reductive Aminases (RedAms) Are Used to Access Chiral Building Blocks with Multiple Stereocenters.
    Casamajo AR; Yu Y; Schnepel C; Morrill C; Barker R; Levy CW; Finnigan J; Spelling V; Westerlund K; Petchey M; Sheppard RJ; Lewis RJ; Falcioni F; Hayes MA; Turner NJ
    J Am Chem Soc; 2023 Oct; 145(40):22041-22046. PubMed ID: 37782882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imine Reductases, Reductive Aminases, and Amine Oxidases for the Synthesis of Chiral Amines: Discovery, Characterization, and Synthetic Applications.
    Cosgrove SC; Brzezniak A; France SP; Ramsden JI; Mangas-Sanchez J; Montgomery SL; Heath RS; Turner NJ
    Methods Enzymol; 2018; 608():131-149. PubMed ID: 30173761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic asymmetric amination of carbonyl functional groups - a synthetic biology approach to organic chemistry.
    Zhu D; Hua L
    Biotechnol J; 2009 Oct; 4(10):1420-31. PubMed ID: 19757497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase.
    Kong W; Liu Y; Huang C; Zhou L; Gao J; Turner NJ; Jiang Y
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202202264. PubMed ID: 35285128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications.
    Yuan B; Yang D; Qu G; Turner NJ; Sun Z
    Chem Soc Rev; 2024 Jan; 53(1):227-262. PubMed ID: 38059509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic
    Aleku GA; Titchiner GR; Roberts GW; Derrington SR; Marshall JR; Hollfelder F; Turner NJ; Leys D
    ACS Sustain Chem Eng; 2022 May; 10(20):6794-6806. PubMed ID: 35634269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive aminations by imine reductases: from milligrams to tons.
    Gilio AK; Thorpe TW; Turner N; Grogan G
    Chem Sci; 2022 May; 13(17):4697-4713. PubMed ID: 35655886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones.
    Kim KH; Akiyama T; Cheon CH
    Chem Asian J; 2016 Jan; 11(2):274-9. PubMed ID: 26482021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines.
    Tseliou V; Masman MF; Böhmer W; Knaus T; Mutti FG
    Chembiochem; 2019 Mar; 20(6):800-812. PubMed ID: 30489013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InspIRED by Nature: NADPH-Dependent Imine Reductases (IREDs) as Catalysts for the Preparation of Chiral Amines.
    Grogan G; Turner NJ
    Chemistry; 2016 Feb; 22(6):1900-1907. PubMed ID: 26667842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential Two-Step Stereoselective Amination of Allylic Alcohols through the Combination of Laccases and Amine Transaminases.
    Albarrán-Velo J; Lavandera I; Gotor-Fernández V
    Chembiochem; 2020 Jan; 21(1-2):200-211. PubMed ID: 31513330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.