These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34123)

  • 1. The effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat.
    Walaas I; Fonnum F
    Neuroscience; 1979; 4(2):209-16. PubMed ID: 34123
    [No Abstract]   [Full Text] [Related]  

  • 2. Neurochemical changes following kainic acid lesions of the nucleus accumbens: implications for a GABAergic accumbal-ventral tegmental pathway.
    Waddington JL; Cross AJ
    Life Sci; 1978 Mar; 22(11):1011-4. PubMed ID: 25363
    [No Abstract]   [Full Text] [Related]  

  • 3. Distribution of putative amino acid transmitters, choline acetyltransferase and glutamate decarboxylase in the inferior colliculus.
    Adams JC; Wenthold RJ
    Neuroscience; 1979; 4(12):1947-51. PubMed ID: 231219
    [No Abstract]   [Full Text] [Related]  

  • 4. An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat.
    Christie MJ; James LB; Beart PM
    J Neurochem; 1985 Aug; 45(2):477-82. PubMed ID: 2861249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional distribution of glutamate decarboxylase and gaba within the amygdaloid complex and stria terminalis system of the rat.
    Ben-Ari Y; Kanazawa I; Zigmond RE
    J Neurochem; 1976 Jun; 26(6):1279-83. PubMed ID: 932733
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical evidence for gamma-aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat.
    Walaas I; Fonnum F
    Neuroscience; 1980; 5(1):63-72. PubMed ID: 7366843
    [No Abstract]   [Full Text] [Related]  

  • 7. Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain.
    Fonnum F; Storm-Mathisen J; Divac I
    Neuroscience; 1981; 6(5):863-73. PubMed ID: 6113562
    [No Abstract]   [Full Text] [Related]  

  • 8. Tridimensional distribution of markers of neurotransmitters within the "accumbens area" of normal human brains.
    Kwak S; Kanazawa I; Sugita H; Toyokura Y
    Neuroscience; 1984 Nov; 13(3):717-31. PubMed ID: 6098857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution of catecholamines, glutamate decarboxylase and choline acetyltransferase in layers of the rat olfactory bulb.
    Jaffé EH; Cuello AC
    Brain Res; 1980 Mar; 186(1):232-7. PubMed ID: 7357447
    [No Abstract]   [Full Text] [Related]  

  • 10. Interpeduncular nucleus: differential effects of habenula lesions on choline acetyltransferase and glutamic acid decarboxylase.
    Mata MM; Schrier BK; Moore RY
    Exp Neurol; 1977 Dec; 57(3):913-21. PubMed ID: 923681
    [No Abstract]   [Full Text] [Related]  

  • 11. Selective destruction by kainic acid of neurons innervated by putative glutamergic afferents in septum and nucleus of the diagonal band.
    Malthe-Sørenssen D; Odden E; Walaas I
    Brain Res; 1980 Jan; 182(2):461-5. PubMed ID: 6244044
    [No Abstract]   [Full Text] [Related]  

  • 12. Neuronal plasticity in the red nucleus and the ventrolateral thalamus of the adult cat: a biochemical approach.
    Nieoullon A
    Adv Neurol; 1984; 40():107-16. PubMed ID: 6141709
    [No Abstract]   [Full Text] [Related]  

  • 13. A striatal source of glutamic acid decarboxylase activity in the substantia nigra.
    Nagy JI; Fibiger HC
    Brain Res; 1980 Apr; 187(1):237-42. PubMed ID: 7357470
    [No Abstract]   [Full Text] [Related]  

  • 14. Hippocampal fibers make synaptic contacts with glutamate decarboxylase-immunoreactive neurons in the rat nucleus accumbens.
    Meredith GE; Wouterlood FG; Pattiselanno A
    Brain Res; 1990 Apr; 513(2):329-34. PubMed ID: 2350704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of repeated immobilization stress on glutamate decarboxylase and choline acetyltransferase in discrete brain regions.
    Gottesfeld Z; Kvetnanský R; Kopin IJ; Jacobowitz DM
    Brain Res; 1978 Aug; 152(2):374-8. PubMed ID: 567089
    [No Abstract]   [Full Text] [Related]  

  • 16. Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain.
    Walaas I; Fonnum F
    Neuroscience; 1980; 5(10):1691-8. PubMed ID: 6253848
    [No Abstract]   [Full Text] [Related]  

  • 17. The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions.
    Walaas I; Fonnum F
    Brain Res; 1979 Nov; 177(2):325-36. PubMed ID: 497834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The toxic effect of kainic acid on neurotransmitters in nucleus accumbens.
    Naalsund LU
    Eur J Pharmacol; 1983 Dec; 96(1-2):137-40. PubMed ID: 6141058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate uptake, glutamate decarboxylase and choline acetyltransferase in subcortical areas after sensorimotor cortical ablations in the cat.
    Nieoullon A; Dusticier N
    Brain Res Bull; 1983 Mar; 10(3):287-93. PubMed ID: 6133598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum.
    Fonnum F; Walaas I
    J Neurochem; 1978 Nov; 31(5):1173-81. PubMed ID: 29947
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.