These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34123063)

  • 1. Brønsted acid catalysis of photosensitized cycloadditions.
    Sherbrook EM; Jung H; Cho D; Baik MH; Yoon TP
    Chem Sci; 2019 Dec; 11(3):856-861. PubMed ID: 34123063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Brønsted acid-controlled intermolecular asymmetric [2 + 2] photocycloadditions.
    Sherbrook EM; Genzink MJ; Park B; Guzei IA; Baik MH; Yoon TP
    Nat Commun; 2021 Sep; 12(1):5735. PubMed ID: 34593790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective [2+2] Cycloadditions of Cinnamate Esters: Generalizing Lewis Acid Catalysis of Triplet Energy Transfer.
    Daub ME; Jung H; Lee BJ; Won J; Baik MH; Yoon TP
    J Am Chem Soc; 2019 Jun; 141(24):9543-9547. PubMed ID: 31145856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral 1,3,2-Oxazaborolidine Catalysts for Enantioselective Photochemical Reactions.
    Schwinger DP; Bach T
    Acc Chem Res; 2020 Sep; 53(9):1933-1943. PubMed ID: 32880165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and Photophysical Properties of [Re (L)(CO)3(phen)](+) and [Ru(L)2(bpy)2](2+) (L = imidazole), Building Units for Long-Range Electron Transfer in Modified Blue Copper Proteins.
    Fumanal M; Daniel C
    J Phys Chem A; 2016 Sep; 120(35):6934-43. PubMed ID: 27504895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid generation of molecular complexity in the Lewis or Brønsted acid-mediated reactions of methylenecyclopropanes.
    Shi M; Lu JM; Wei Y; Shao LX
    Acc Chem Res; 2012 Apr; 45(4):641-52. PubMed ID: 22166122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and Reactions of Brønsted and Lewis Acid Adducts with Electron-Rich Heteroaromatic Compounds.
    Hartmann H; Liebscher J
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Brønsted Photobases Act as Lewis Photobases?
    Voegtle MJ; Dawlaty JM
    J Am Chem Soc; 2022 May; 144(18):8178-8184. PubMed ID: 35476459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.
    Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG
    J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast photochemical dissociation of an equatorial CO ligand from trans(X,X)-[Ru(X)2(CO)2(bpy)] (X = Cl, Br, I): a picosecond time-resolved infrared spectroscopic and DFT computational study.
    Gabrielsson A; Zális S; Matousek P; Towrie M; Vlcek A
    Inorg Chem; 2004 Nov; 43(23):7380-8. PubMed ID: 15530088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems.
    Meylemans HA; Lei CF; Damrauer NH
    Inorg Chem; 2008 May; 47(10):4060-76. PubMed ID: 18407628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative Stereoinduction in Asymmetric Photocatalysis.
    Chapman SJ; Swords WB; Le CM; Guzei IA; Toste FD; Yoon TP
    J Am Chem Soc; 2022 Mar; 144(9):4206-4213. PubMed ID: 35192768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected effect of catalyst concentration on photochemical CO
    Kuramochi Y; Itabashi J; Fukaya K; Enomoto A; Yoshida M; Ishida H
    Chem Sci; 2015 May; 6(5):3063-3074. PubMed ID: 28706681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.
    Pannwitz A; Wenger OS
    Phys Chem Chem Phys; 2016 Apr; 18(16):11374-82. PubMed ID: 27094541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodoimidazolinium-Catalyzed Reduction of Quinoline by Hantzsch Ester: Halogen Bond or Brønsted Acid Catalysis.
    Ser CT; Yang H; Wong MW
    J Org Chem; 2019 Aug; 84(16):10338-10348. PubMed ID: 31283228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rejuvenation of dearomative cycloaddition reactions
    Palai A; Rai P; Maji B
    Chem Sci; 2023 Nov; 14(43):12004-12025. PubMed ID: 37969572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced electron transfer in a chromophore-catalyst assembly anchored to TiO2.
    Ashford DL; Song W; Concepcion JJ; Glasson CR; Brennaman MK; Norris MR; Fang Z; Templeton JL; Meyer TJ
    J Am Chem Soc; 2012 Nov; 134(46):19189-98. PubMed ID: 23101955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.