These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34123102)

  • 1. Free-standing metal-organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles.
    Barcus K; Cohen SM
    Chem Sci; 2020 Aug; 11(32):8433-8437. PubMed ID: 34123102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of Metal-Organic Framework (MOF) Nanoparticle Monolayers and Free-Standing Multilayers.
    Katayama Y; Kalaj M; Barcus KS; Cohen SM
    J Am Chem Soc; 2019 Dec; 141(51):20000-20003. PubMed ID: 31782921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of Self-Assembled Metal-Organic Framework Monolayers using Polymer-coated Particles.
    Kang M; Cohen SM
    J Vis Exp; 2024 Jun; (208):. PubMed ID: 38949297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Polymer Characteristics on the Self-Assembly of Polymer-Grafted Metal-Organic Framework Particles.
    Barcus K; Lin PA; Zhou Y; Arya G; Cohen SM
    ACS Nano; 2022 Nov; 16(11):18168-18177. PubMed ID: 36252115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of grafted polymer species on particle monolayer structure at the air-water interface.
    Mouri E; Okazaki Y; Komune S; Yoshinaga K
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2486-95. PubMed ID: 21449411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile One-Step Metal-Organic Framework Surface Polymerization Method.
    Li S; Zhang S; Dai D; Li T
    Inorg Chem; 2021 Aug; 60(16):11750-11755. PubMed ID: 34139840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr).
    Andrés MA; Sicard C; Serre C; Roubeau O; Gascón I
    Beilstein J Nanotechnol; 2019; 10():654-665. PubMed ID: 30931207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control.
    Ma X; Chai Y; Li P; Wang B
    Acc Chem Res; 2019 May; 52(5):1461-1470. PubMed ID: 31074608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oriented self-assembly of metal-organic frameworks driven by photoinitiated monomer polymerization.
    Fan F; Zhang Z; Zeng Q; Zhang L; Zhang X; Wang T; Fu Y
    RSC Adv; 2022 Jun; 12(30):19406-19411. PubMed ID: 35865556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Straightforward Method to Prepare MOF-Based Membranes via Direct Seeding of MOF-Polymer Hybrid Nanoparticles.
    Fang M; Drobek M; Cot D; Montoro C; Semsarilar M
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward MOF@Polymer Core-Shell Particles: Design Principles and Potential Applications.
    Wang D; Li T
    Acc Chem Res; 2023 Feb; 56(4):462-474. PubMed ID: 36745822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking.
    Katayama Y; Bentz KC; Cohen SM
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):13029-13037. PubMed ID: 30855936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO
    Martínez-Izquierdo L; García-Comas C; Dai S; Navarro M; Tissot A; Serre C; Téllez C; Coronas J
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4024-4034. PubMed ID: 38214452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic Organophosphate Hydrolysis Using Nanofiber-Templated UiO-66-NH
    Dwyer DB; Lee DT; Boyer S; Bernier WE; Parsons GN; Jones WE
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25794-25803. PubMed ID: 29972296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Bimetallic In Situ-Grown 3D Nickel-Foam-Supported NH
    Palanisamy S; Senthil Raja D; Subramani B; Wu TH; Wang YM
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32468-32476. PubMed ID: 32578973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processable UiO-66 Metal-Organic Framework Fluid Gel and Electrical Conductivity of Its Nanofilm with Sub-100 nm Thickness.
    Somjit V; Thinsoongnoen P; Waiprasoet S; Pila T; Pattanasattayavong P; Horike S; Kongpatpanich K
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30844-30852. PubMed ID: 34165275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UiO-66-NH
    Lee DT; Zhao J; Oldham CJ; Peterson GW; Parsons GN
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44847-44855. PubMed ID: 29165990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvothermal Synthesis of MIL-96 and UiO-66-NH2 on Atomic Layer Deposited Metal Oxide Coatings on Fiber Mats.
    Barton HF; Davis AK; Lee DT; Parsons GN
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29985357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generic and facile strategy to fabricate metal-organic framework films on TiO
    Yang H; Fei H
    Dalton Trans; 2017 Feb; 46(9):2751-2755. PubMed ID: 28180231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.