These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34123140)

  • 21. Interface-specific ultrafast two-dimensional vibrational spectroscopy.
    Bredenbeck J; Ghosh A; Nienhuys HK; Bonn M
    Acc Chem Res; 2009 Sep; 42(9):1332-42. PubMed ID: 19441810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing covariance structures in fourier transform infrared and Raman microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different processing parameters.
    Böcker U; Ofstad R; Wu Z; Bertram HC; Sockalingum GD; Manfait M; Egelandsdal B; Kohler A
    Appl Spectrosc; 2007 Oct; 61(10):1032-9. PubMed ID: 17958951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Changes Induced in Grapevine (Vitis vinifera L.) DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study.
    Dina NE; Muntean CM; Leopold N; Fălămaș A; Halmagyi A; Coste A
    Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Secondary Structures of Model Polypeptides in Solutions with Hyper-Raman Spectroscopy.
    Liu TH; Okuno M
    J Phys Chem B; 2023 Aug; 127(30):6675-6683. PubMed ID: 37468171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.
    Burris PC; Laage D; Thompson WH
    J Chem Phys; 2016 May; 144(19):194709. PubMed ID: 27208967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linear and two-dimensional infrared spectroscopic study of the amide I and II modes in fully extended peptide chains.
    Maekawa H; Ballano G; Toniolo C; Ge NH
    J Phys Chem B; 2011 May; 115(18):5168-82. PubMed ID: 20845957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Ala‒Ala‒Ala.
    Feng CJ; Dhayalan B; Tokmakoff A
    Biophys J; 2018 Jun; 114(12):2820-2832. PubMed ID: 29925019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dihedral angles of tripeptides in solution directly determined by polarized Raman and FTIR spectroscopy.
    Schweitzer-Stenner R
    Biophys J; 2002 Jul; 83(1):523-32. PubMed ID: 12080139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Dependence of Extended Amide III Vibrations in Two-Dimensional Infrared Spectra.
    Brüggemann J; Chekmeneva M; Wolter M; Jacob CR
    J Phys Chem Lett; 2023 Oct; 14(41):9257-9264. PubMed ID: 37812580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2D-IR spectroscopy of proteins in H
    Rutherford SH; Baker MJ; Hunt NT
    J Chem Phys; 2023 Jan; 158(3):030901. PubMed ID: 36681646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring Coherently Coupled Intramolecular Vibrational and Charge-Transfer Dynamics with Two-Dimensional Vibrational-Electronic Spectroscopy.
    Courtney TL; Fox ZW; Estergreen L; Khalil M
    J Phys Chem Lett; 2015 Apr; 6(7):1286-92. PubMed ID: 26262989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using 2D Correlation Analysis to Enhance Spectral Information Available from Highly Spatially Resolved AFM-IR Spectra.
    Marcott C; Lo M; Hu Q; Kjoller K; Boskey A; Noda I
    J Mol Struct; 2014 Jul; 1069():284-289. PubMed ID: 25024505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local structure of beta-hairpin isotopomers by FTIR, 2D IR, and ab initio theory.
    Wang J; Chen J; Hochstrasser RM
    J Phys Chem B; 2006 Apr; 110(14):7545-55. PubMed ID: 16599536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.
    Frontiera RR; Henry AI; Gruenke NL; Van Duyne RP
    J Phys Chem Lett; 2011 May; 2(10):1199-203. PubMed ID: 26295326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.
    Vlček A; Kvapilová H; Towrie M; Záliš S
    Acc Chem Res; 2015 Mar; 48(3):868-76. PubMed ID: 25699661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triply resonant sum frequency spectroscopy: combining advantages of resonance Raman and 2D-IR.
    Boyle ES; Neff-Mallon NA; Wright JC
    J Phys Chem A; 2013 Nov; 117(47):12401-8. PubMed ID: 24160771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional infrared spectroscopy of vibrational polaritons.
    Xiang B; Ribeiro RF; Dunkelberger AD; Wang J; Li Y; Simpkins BS; Owrutsky JC; Yuen-Zhou J; Xiong W
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4845-4850. PubMed ID: 29674448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What can we learn from three-dimensional infrared spectroscopy?
    Garrett-Roe S; Hamm P
    Acc Chem Res; 2009 Sep; 42(9):1412-22. PubMed ID: 19449855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Infrared and Raman Spectroscopic Studies of Molecular Disorders in Skin Cancer.
    Anastassopoulou J; Kyriakidou M; Malesiou E; Rallis M; Theophanides T
    In Vivo; 2019; 33(2):567-572. PubMed ID: 30804143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.