These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34123141)

  • 1. A neutron scattering perspective on the structure, softness and dynamics of the ligand shell of PbS nanocrystals in solution.
    Seydel T; Koza MM; Matsarskaia O; André A; Maiti S; Weber M; Schweins R; Prévost S; Schreiber F; Scheele M
    Chem Sci; 2020 Aug; 11(33):8875-8884. PubMed ID: 34123141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation.
    Winslow SW; Shcherbakov-Wu W; Liu Y; Tisdale WA; Swan JW
    J Chem Phys; 2019 Jun; 150(24):244702. PubMed ID: 31255069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand Shell Structure in Lead Sulfide-Oleic Acid Colloidal Quantum Dots Revealed by Small-Angle Scattering.
    Weir MP; Toolan DTW; Kilbride RC; Penfold NJW; Washington AL; King SM; Xiao J; Zhang Z; Gray V; Dowland S; Winkel J; Greenham NC; Friend RH; Rao A; Ryan AJ; Jones RAL
    J Phys Chem Lett; 2019 Aug; 10(16):4713-4719. PubMed ID: 31362504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand Dynamics in Nanocrystal Solids Studied with Quasi-Elastic Neutron Scattering.
    Jansen M; Juranyi F; Yarema O; Seydel T; Wood V
    ACS Nano; 2021 Dec; 15(12):20517-20526. PubMed ID: 34878757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Strongest Particle: Size-Dependent Elastic Strength and Debye Temperature of PbS Nanocrystals.
    Bian K; Bassett W; Wang Z; Hanrath T
    J Phys Chem Lett; 2014 Nov; 5(21):3688-93. PubMed ID: 26278737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Neutron Spin Echo Spectroscopy as a Unique Probe for Lipid Membrane Dynamics and Membrane-Protein Interactions.
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34358222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trilayer-cubic core-shell structure of PbS/EuS nanocrystals revealed by the combination of the synchrotron small-angle X-ray scattering method and energy-dispersive X-ray spectroscopy.
    Masunaga H; Ogawa H; Nakashima T; Kawai T; Hikima T; Takata M; Sasaki S
    Dalton Trans; 2013 Dec; 42(45):16216-21. PubMed ID: 24113715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PbS Nanocrystal Emission Is Governed by Multiple Emissive States.
    Caram JR; Bertram SN; Utzat H; Hess WR; Carr JA; Bischof TS; Beyler AP; Wilson MW; Bawendi MG
    Nano Lett; 2016 Oct; 16(10):6070-6077. PubMed ID: 27627129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time.
    Maiti S; André A; Banerjee R; Hagenlocher J; Konovalov O; Schreiber F; Scheele M
    J Phys Chem Lett; 2018 Feb; 9(4):739-744. PubMed ID: 29365268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals.
    Warner JH; Thomsen E; Watt AR; Heckenberg NR; Rubinsztein-Dunlop H
    Nanotechnology; 2005 Feb; 16(2):175-9. PubMed ID: 21727420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices.
    Novák J; Banerjee R; Kornowski A; Jankowski M; André A; Weller H; Schreiber F; Scheele M
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22526-33. PubMed ID: 27504626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between capped tetrahedral gold nanocrystals: dependence on effective softness.
    Liu X; Ni Y; He L
    Soft Matter; 2019 Oct; 15(41):8392-8401. PubMed ID: 31602452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Importance of Unbound Ligand in Nanocrystal Superlattice Formation.
    Winslow SW; Swan JW; Tisdale WA
    J Am Chem Soc; 2020 May; 142(21):9675-9685. PubMed ID: 32401509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying "Softness" of Organic Coatings on Gold Nanoparticles Using Correlated Small-Angle X-ray and Neutron Scattering.
    Diroll BT; Weigandt KM; Jishkariani D; Cargnello M; Murphy RJ; Hough LA; Murray CB; Donnio B
    Nano Lett; 2015 Dec; 15(12):8008-12. PubMed ID: 26580005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PbS/PbSe structures with core-shell type morphology synthesized from PbS nanocrystals.
    Koktysh DS; McBride JR; Dixit SK; Feldman LC; Rosenthal SJ
    Nanotechnology; 2007 Dec; 18(49):495607. PubMed ID: 20442480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification, Exchange, and Removal of Surface Ligands on Noble-Metal Nanocrystals.
    Kwan Li K; Wu CY; Yang TH; Qin D; Xia Y
    Acc Chem Res; 2023 Jun; 56(12):1517-1527. PubMed ID: 37162754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the Atomistic Structure of Graded Core/Shell Colloidal Nanocrystals.
    Yarema M; Xing Y; Lechner RT; Ludescher L; Dordevic N; Lin WMM; Yarema O; Wood V
    Sci Rep; 2017 Sep; 7(1):11718. PubMed ID: 28916804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.