These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34123199)

  • 1. A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries.
    Park S; Kristanto I; Jung GY; Ahn DB; Jeong K; Kwak SK; Lee SY
    Chem Sci; 2020 Oct; 11(43):11692-11698. PubMed ID: 34123199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Nanofiber/Carbon Nanotube-Based Bicontinuous Ion/Electron Conduction Networks for High-Performance Aqueous Zn-Ion Batteries.
    Kim SH; Kim JM; Ahn DB; Lee SY
    Small; 2020 Nov; 16(44):e2002837. PubMed ID: 33030299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks.
    Jeong K; Park S; Jung GY; Kim SH; Lee YH; Kwak SK; Lee SY
    J Am Chem Soc; 2019 Apr; 141(14):5880-5885. PubMed ID: 30888813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton Insertion Promoted a Polyfurfural/MnO
    Zhao Q; Huang X; Zhou M; Ju Z; Sun X; Sun Y; Huang Z; Li H; Ma T
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36072-36081. PubMed ID: 32700891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naphthalene dianhydride organic anode for a 'rocking-chair' zinc-proton hybrid ion battery.
    Ghosh M; Vijayakumar V; Kurian M; Dilwale S; Kurungot S
    Dalton Trans; 2021 Mar; 50(12):4237-4243. PubMed ID: 33751012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries.
    Chan CY; Wang Z; Li Y; Yu H; Fei B; Xin JH
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30594-30602. PubMed ID: 34165274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Energy and Long-Lived Zn-MnO
    Cui YF; Zhuang ZB; Xie ZL; Cao RF; Hao Q; Zhang N; Liu WQ; Zhu YH; Huang G
    ACS Nano; 2022 Dec; 16(12):20730-20738. PubMed ID: 36507930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn-MnO
    Cho J; Yadav GG; Weiner M; Huang J; Upreti A; Wei X; Yakobov R; Hawkins BE; Nyce M; Lambert TN; Arnot DJ; Bell NS; Schorr NB; Booth MN; Turney DE; Cowles G; Banerjee S
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic Ether-Water Hybrid Electrolyte-Guided Dendrite-Free Lamellar Zinc Deposition by Tuning the Solvation Structure for High-Performance Aqueous Zinc-Ion Batteries.
    Feng R; Chi X; Qiu Q; Wu J; Huang J; Liu J; Liu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40638-40647. PubMed ID: 34405987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries.
    Yang H; Qiao Y; Chang Z; Deng H; He P; Zhou H
    Adv Mater; 2020 Sep; 32(38):e2004240. PubMed ID: 32797719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H
    Gao X; Wu H; Li W; Tian Y; Zhang Y; Wu H; Yang L; Zou G; Hou H; Ji X
    Small; 2020 Feb; 16(5):e1905842. PubMed ID: 31916666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries.
    Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthoquinone-Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc-Organic Batteries.
    Zheng S; Shi D; Yan D; Wang Q; Sun T; Ma T; Li L; He D; Tao Z; Chen J
    Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202117511. PubMed ID: 35064728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizing a zinc anode
    Aupama V; Kao-Ian W; Sangsawang J; Mohan G; Wannapaiboon S; Mohamad AA; Pattananuwat P; Sriprachuabwong C; Liu WR; Kheawhom S
    Nanoscale; 2023 May; 15(20):9003-9013. PubMed ID: 37128979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS
    Bhoyate S; Mhin S; Jeon JE; Park K; Kim J; Choi W
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27249-27257. PubMed ID: 32437120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries.
    Li B; Xue J; Han C; Liu N; Ma K; Zhang R; Wu X; Dai L; Wang L; He Z
    J Colloid Interface Sci; 2021 Oct; 599():467-475. PubMed ID: 33962207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc-Ion Batteries.
    Wang W; Kale VS; Cao Z; Lei Y; Kandambeth S; Zou G; Zhu Y; Abouhamad E; Shekhah O; Cavallo L; Eddaoudi M; Alshareef HN
    Adv Mater; 2021 Oct; 33(39):e2103617. PubMed ID: 34365688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes.
    Xie J; Zhang Q
    Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries.
    Yuan D; Manalastas W; Zhang L; Chan JJ; Meng S; Chen Y; Srinivasan M
    ChemSusChem; 2019 Nov; 12(21):4889-4900. PubMed ID: 31475452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries.
    Jin Y; Zou L; Liu L; Engelhard MH; Patel RL; Nie Z; Han KS; Shao Y; Wang C; Zhu J; Pan H; Liu J
    Adv Mater; 2019 Jul; 31(29):e1900567. PubMed ID: 31157468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.