BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34123208)

  • 1. Retracted Article: Divergent synthesis of 5-substituted pyrimidine 2'-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases.
    Tran A; Zheng S; White DS; Curry AM; Cen Y
    Chem Sci; 2020 Oct; 11(43):11818-11826. PubMed ID: 34123208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convenient synthesis of pyrimidine 2'-deoxyribonucleoside monophosphates with important epigenetic marks at the 5-position.
    Zheng S; Tran A; Curry AM; White DS; Cen Y
    Org Biomol Chem; 2020 Jul; 18(27):5164-5173. PubMed ID: 32584362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retraction: Divergent synthesis of 5-substituted pyrimidine 2'-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases.
    Tran A; Zheng S; White DS; Curry AM; Cen Y
    Chem Sci; 2021 Mar; 12(9):3360. PubMed ID: 35356808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate recognition by a family of uracil-DNA glycosylases: UNG, MUG, and TDG.
    Liu P; Burdzy A; Sowers LC
    Chem Res Toxicol; 2002 Aug; 15(8):1001-9. PubMed ID: 12184783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3.
    Brooks SC; Fischer RL; Huh JH; Eichman BF
    Biochemistry; 2014 Apr; 53(15):2525-32. PubMed ID: 24678721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocaged 5-(Hydroxymethyl)pyrimidine Nucleoside Phosphoramidites for Specific Photoactivatable Epigenetic Labeling of DNA.
    Chakrapani A; Vaňková Hausnerová V; Ruiz-Larrabeiti O; Pohl R; Krásný L; Hocek M
    Org Lett; 2020 Nov; 22(22):9081-9085. PubMed ID: 33156631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and enzymatic modifications of 5-methylcytosine at the intersection of DNA damage, repair, and epigenetic reprogramming.
    Baljinnyam T; Sowers ML; Hsu CW; Conrad JW; Herring JL; Hackfeld LC; Sowers LC
    PLoS One; 2022; 17(8):e0273509. PubMed ID: 36037209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of Sensitive Ester and Chloropurine Groups into Oligodeoxynucleotides through Solid Phase Synthesis.
    Halami B; Shahsavari S; Nelson Z; Prehoda L; Eriyagama DNAM; Fang S
    ChemistrySelect; 2018 Aug; 3(31):8857-8862. PubMed ID: 30886889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid excision of oxidized adenine by human thymine DNA glycosylase.
    Servius HW; Pidugu LS; Sherman ME; Drohat AC
    J Biol Chem; 2023 Jan; 299(1):102756. PubMed ID: 36460098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage.
    Dizdaroglu M
    Mutat Res; 2003 Oct; 531(1-2):109-26. PubMed ID: 14637249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of deaminated bases in DNA.
    Kow YW
    Free Radic Biol Med; 2002 Oct; 33(7):886-93. PubMed ID: 12361800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oligonucleotide microarray for the monitoring of repair enzyme activity toward different DNA base damage.
    Sauvaigo S; Guerniou V; Rapin D; Gasparutto D; Caillat S; Favier A
    Anal Biochem; 2004 Oct; 333(1):182-92. PubMed ID: 15351295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compromised incision of oxidized pyrimidines in liver mitochondria of mice deficient in NTH1 and OGG1 glycosylases.
    Karahalil B; de Souza-Pinto NC; Parsons JL; Elder RH; Bohr VA
    J Biol Chem; 2003 Sep; 278(36):33701-7. PubMed ID: 12819227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 6-Alkynylated Purine-Containing DNA via On-Column Sonogashira Coupling and Investigation of Their Base-Pairing Properties.
    Okamura H; Trinh GH; Dong Z; Fan W; Nagatsugi F
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase.
    Chang C; Yang Y; Li J; Park SH; Fang GC; Liang C; Cao W
    DNA Repair (Amst); 2022 Nov; 119():103408. PubMed ID: 36179537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.
    Akbari M; Otterlei M; Peña-Diaz J; Krokan HE
    Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification.
    Dietzsch J; Feineis D; Höbartner C
    FEBS Lett; 2018 Jun; 592(12):2032-2047. PubMed ID: 29683490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.
    Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells.
    Neddermann P; Jiricny J
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1642-6. PubMed ID: 8127859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.