BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34123246)

  • 1. Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery.
    Morrison CN; Prosser KE; Stokes RW; Cordes A; Metzler-Nolte N; Cohen SM
    Chem Sci; 2019 Dec; 11(5):1216-1225. PubMed ID: 34123246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escape from planarity in fragment-based drug discovery: A physicochemical and 3D property analysis of synthetic 3D fragment libraries.
    Hamilton DJ; Dekker T; Klein HF; Janssen GV; Wijtmans M; O'Brien P; de Esch IJP
    Drug Discov Today Technol; 2020 Dec; 38():77-90. PubMed ID: 34895643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Synthesis of 56 Shape-Diverse 3D Fragments.
    Downes TD; Jones SP; Klein HF; Wheldon MC; Atobe M; Bond PS; Firth JD; Chan NS; Waddelove L; Hubbard RE; Blakemore DC; De Fusco C; Roughley SD; Vidler LR; Whatton MA; Woolford AJ; Wrigley GL; O'Brien P
    Chemistry; 2020 Jul; 26(41):8969-8975. PubMed ID: 32315100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Puckering the Planar Landscape of Fragments: Design and Synthesis of a 3D Cyclobutane Fragment Library.
    Hamilton DJ; Beemsterboer M; Carter CM; Elsayed J; Huiberts REM; Klein HF; O'Brien P; de Esch IJP; Wijtmans M
    ChemMedChem; 2022 May; 17(9):e202200113. PubMed ID: 35277937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment-based drug discovery-the importance of high-quality molecule libraries.
    Bon M; Bilsland A; Bower J; McAulay K
    Mol Oncol; 2022 Nov; 16(21):3761-3777. PubMed ID: 35749608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escape from planarity in fragment-based drug discovery: A synthetic strategy analysis of synthetic 3D fragment libraries.
    Klein HF; Hamilton DJ; de Esch IJP; Wijtmans M; O'Brien P
    Drug Discov Today; 2022 Sep; 27(9):2484-2496. PubMed ID: 35636722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets.
    Zhao G; Zhu M; Li Y; Zhang G; Li Y
    Expert Opin Drug Discov; 2024 Jun; 19(6):725-740. PubMed ID: 38753553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment-based screening with natural products for novel anti-parasitic disease drug discovery.
    Liu M; Quinn RJ
    Expert Opin Drug Discov; 2019 Dec; 14(12):1283-1295. PubMed ID: 31512943
    [No Abstract]   [Full Text] [Related]  

  • 9. An Automated, Open-Source Workflow for the Generation of (3D) Fragment Libraries.
    Dekker T; Janssen MACH; Sutherland C; Aben RWM; Scheeren HW; Blanco-Ania D; Rutjes FPJT; Wijtmans M; de Esch IJP
    ACS Med Chem Lett; 2023 May; 14(5):583-590. PubMed ID: 37197454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Size Matters: Diversity for Fragment Library Design.
    Shi Y; von Itzstein M
    Molecules; 2019 Aug; 24(15):. PubMed ID: 31387220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction: Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery.
    Morrison CN; Prosser KE; Stokes RW; Cordes A; Metzler-Nolte N; Cohen SM
    Chem Sci; 2022 Aug; 13(32):9450-9452. PubMed ID: 36093021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Further correction: Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery.
    Morrison CN; Prosser KE; Stokes RW; Cordes A; Metzler-Nolte N; Cohen SM
    Chem Sci; 2023 Sep; 14(37):10360-10362. PubMed ID: 37772109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Applications of Diversity-Oriented Synthesis Toward Novel, 3-Dimensional Fragment Collections.
    Kidd SL; Osberger TJ; Mateu N; Sore HF; Spring DR
    Front Chem; 2018; 6():460. PubMed ID: 30386766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fragment-based drug discovery: concept and aim].
    Tanaka D
    Yakugaku Zasshi; 2010 Mar; 130(3):315-23. PubMed ID: 20190516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Route to three-dimensional fragments using diversity-oriented synthesis.
    Hung AW; Ramek A; Wang Y; Kaya T; Wilson JA; Clemons PA; Young DW
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6799-804. PubMed ID: 21482811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment-based drug discovery for disorders of the central nervous system: designing better drugs piece by piece.
    Chan BWGL; Lynch NB; Tran W; Joyce JM; Savage GP; Meutermans W; Montgomery AP; Kassiou M
    Front Chem; 2024; 12():1379518. PubMed ID: 38698940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia.
    Keserű GM; Erlanson DA; Ferenczy GG; Hann MM; Murray CW; Pickett SD
    J Med Chem; 2016 Sep; 59(18):8189-206. PubMed ID: 27124799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Fragment-Based Drug Discovery to Versatile Targets.
    Li Q
    Front Mol Biosci; 2020; 7():180. PubMed ID: 32850968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery.
    Ferreira LG; Andricopulo AD
    Curr Top Med Chem; 2017; 17(20):2260-2270. PubMed ID: 28240184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico construction of a focused fragment library facilitating exploration of chemical space.
    Han W; Xu X; Fan Q; Yan Y; Zhang Y; Chen Y; Liu H
    Mol Inform; 2024 Mar; 43(3):e202300256. PubMed ID: 38193642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.