These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34123267)

  • 1. Toward a quantitative theoretical method for infrared and Raman spectroscopic studies on single-crystal electrode/liquid interfaces.
    Fang Y; Dong JC; Ding SY; Cheng J; Feliu JM; Li JF; Tian ZQ
    Chem Sci; 2019 Dec; 11(5):1425-1430. PubMed ID: 34123267
    [No Abstract]   [Full Text] [Related]  

  • 2. Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings.
    Bie YQ; Horng J; Shi Z; Ju L; Zhou Q; Zettl A; Yu D; Wang F
    Nat Commun; 2015 Jun; 6():7593. PubMed ID: 26123807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (N = 1-8) interfaces.
    Lu R; Gan W; Wu BH; Zhang Z; Guo Y; Wang HF
    J Phys Chem B; 2005 Jul; 109(29):14118-29. PubMed ID: 16852773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications.
    Li JF; Rudnev A; Fu Y; Bodappa N; Wandlowski T
    ACS Nano; 2013 Oct; 7(10):8940-52. PubMed ID: 24007327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the Oxygen Dynamics of Solid-Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies.
    Cheng W; Su H; Liu Q
    Acc Chem Res; 2022 Jul; 55(14):1949-1959. PubMed ID: 35801353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ probing electrified interfacial water structures at atomically flat surfaces.
    Li CY; Le JB; Wang YH; Chen S; Yang ZL; Li JF; Cheng J; Tian ZQ
    Nat Mater; 2019 Jul; 18(7):697-701. PubMed ID: 31036960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion.
    Wang Y; Chen D
    ACS Appl Mater Interfaces; 2022 Feb; ():. PubMed ID: 35130433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations.
    Ge A; Rudshteyn B; Videla PE; Miller CJ; Kubiak CP; Batista VS; Lian T
    Acc Chem Res; 2019 May; 52(5):1289-1300. PubMed ID: 31056907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Happy Get-Together - Probing Electrochemical Interfaces by Non-Linear Vibrational Spectroscopy.
    De R; Dietzek-Ivanšić B
    Chemistry; 2022 Oct; 28(55):e202200407. PubMed ID: 35730530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the Atomistic Structures at the Interface of Au(111) Electrode-Sulfuric Acid Solution.
    Fang Y; Ding SY; Zhang M; Steinmann SN; Hu R; Mao BW; Feliu JM; Tian ZQ
    J Am Chem Soc; 2020 May; 142(20):9439-9446. PubMed ID: 32338907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water.
    Wang YH; Zheng S; Yang WM; Zhou RY; He QF; Radjenovic P; Dong JC; Li S; Zheng J; Yang ZL; Attard G; Pan F; Tian ZQ; Li JF
    Nature; 2021 Dec; 600(7887):81-85. PubMed ID: 34853456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling the size effect of Pt-on-Au nanostructures on CO and methanol electrooxidation by in situ electrochemical SERS.
    Chen X; Liang MM; Xu J; Sun HL; Wang C; Wei J; Zhang H; Yang WM; Yang ZL; Sun JJ; Tian ZQ; Li JF
    Nanoscale; 2020 Mar; 12(9):5341-5346. PubMed ID: 32091518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Electric Field Distributions in the Double Layer of a Single-Crystal Electrode with Angstrom Spatial Resolution using Raman Spectroscopy.
    Wen BY; Lin JS; Zhang YJ; Radjenovic PM; Zhang XG; Tian ZQ; Li JF
    J Am Chem Soc; 2020 Jul; 142(27):11698-11702. PubMed ID: 32551614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy.
    Tian ZQ; Ren B
    Annu Rev Phys Chem; 2004; 55():197-229. PubMed ID: 15117252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single spectroscopic probe for in situ analysis of electronic and vibrational information at both sides of electrode/electrolyte interfaces using surface-enhanced Raman scattering.
    Isogai T; Motobayashi K; Ikeda K
    J Chem Phys; 2021 Nov; 155(20):204702. PubMed ID: 34852477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces.
    Shao F; Wong JK; Low QH; Iannuzzi M; Li J; Lan J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2118166119. PubMed ID: 35858341
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Wang G; Wang Y; Wang G; Xiao L; Zhuang L
    Faraday Discuss; 2022 Apr; 233(0):100-111. PubMed ID: 34889928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode-solution interfaces.
    Bhattacharyya D; Videla PE; Cattaneo M; Batista VS; Lian T; Kubiak CP
    Chem Sci; 2021 Aug; 12(30):10131-10149. PubMed ID: 34377403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Reaction Paths Using Vibrational Spectroscopies: The Case of the Dehydrogenation of Propane toward Propylene on Pd-Doped Cu(111) Surface.
    Hu W; Cao X
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29320428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes.
    Liu B; Blaszczyk A; Mayor M; Wandlowski T
    ACS Nano; 2011 Jul; 5(7):5662-72. PubMed ID: 21634391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.