BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34123344)

  • 1. Targeting structural features of viral genomes with a nano-sized supramolecular drug.
    Melidis L; Styles IB; Hannon MJ
    Chem Sci; 2021 Apr; 12(20):7174-7184. PubMed ID: 34123344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Cylinders Target Bulge Structures in the 5' UTR of the RNA Genome of SARS-CoV-2 and Inhibit Viral Replication.
    Melidis L; Hill HJ; Coltman NJ; Davies SP; Winczura K; Chauhan T; Craig JS; Garai A; Hooper CAJ; Egan RT; McKeating JA; Hodges NJ; Stamataki Z; Grzechnik P; Hannon MJ
    Angew Chem Weinheim Bergstr Ger; 2021 Aug; 133(33):18292-18299. PubMed ID: 38505190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallo supramolecular cylinders inhibit HIV-1 TAR-TAT complex formation and viral replication in cellulo.
    Cardo L; Nawroth I; Cail PJ; McKeating JA; Hannon MJ
    Sci Rep; 2018 Sep; 8(1):13342. PubMed ID: 30190568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Cylinders Target Bulge Structures in the 5' UTR of the RNA Genome of SARS-CoV-2 and Inhibit Viral Replication*.
    Melidis L; Hill HJ; Coltman NJ; Davies SP; Winczura K; Chauhan T; Craig JS; Garai A; Hooper CAJ; Egan RT; McKeating JA; Hodges NJ; Stamataki Z; Grzechnik P; Hannon MJ
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):18144-18151. PubMed ID: 33915014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication.
    Malina J; Hannon MJ; Brabec V
    Sci Rep; 2016 Jul; 6():29674. PubMed ID: 27405089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic ensemble view of the conformational landscape of HIV-1 TAR RNA and allosteric recognition.
    Lu J; Kadakkuzha BM; Zhao L; Fan M; Qi X; Xia T
    Biochemistry; 2011 Jun; 50(22):5042-57. PubMed ID: 21553929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA.
    Du Z; Ulyanov NB; Yu J; Andino R; James TL
    Biochemistry; 2004 May; 43(19):5757-71. PubMed ID: 15134450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and structural elements at the 3' terminus of bovine viral diarrhea virus genomic RNA: functional role during RNA replication.
    Yu H; Grassmann CW; Behrens SE
    J Virol; 1999 May; 73(5):3638-48. PubMed ID: 10196256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV-1 TAR RNA spontaneously undergoes relevant apo-to-holo conformational transitions in molecular dynamics and constrained geometrical simulations.
    Fulle S; Christ NA; Kestner E; Gohlke H
    J Chem Inf Model; 2010 Aug; 50(8):1489-501. PubMed ID: 20726603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural diversity and biological role of the 5' untranslated regions of picornavirus.
    Peng T; Yang F; Yang F; Cao W; Zheng H; Zhu Z
    RNA Biol; 2023 Jan; 20(1):548-562. PubMed ID: 37534989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV RNA dimerisation interference by antisense oligonucleotides targeted to the 5' UTR structural elements.
    Reyes-Darias JA; Sánchez-Luque FJ; Berzal-Herranz A
    Virus Res; 2012 Oct; 169(1):63-71. PubMed ID: 22820401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organometallic Pillarplexes That Bind DNA 4-Way Holliday Junctions and Forks.
    Craig JS; Melidis L; Williams HD; Dettmer SJ; Heidecker AA; Altmann PJ; Guan S; Campbell C; Browning DF; Sigel RKO; Johannsen S; Egan RT; Aikman B; Casini A; Pöthig A; Hannon MJ
    J Am Chem Soc; 2023 Jun; 145(25):13570-13580. PubMed ID: 37318835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Approach to 3D Modeling of Inhomogeneous Populations of Viral Regulatory RNA.
    Osmer PS; Singh G; Boris-Lawrie K
    Viruses; 2020 Sep; 12(10):. PubMed ID: 33003639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of Hoechst 33258 to the TAR RNA of HIV-1. Recognition of a pyrimidine bulge-dependent structure.
    Dassonneville L; Hamy F; Colson P; Houssier C; Bailly C
    Nucleic Acids Res; 1997 Nov; 25(22):4487-92. PubMed ID: 9358156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotaxanating Metallo-supramolecular Nano-cylinder Helicates to Switch DNA Junction Binding.
    Hooper CAJ; Cardo L; Craig JS; Melidis L; Garai A; Egan RT; Sadovnikova V; Burkert F; Male L; Hodges NJ; Browning DF; Rosas R; Liu F; Rocha FV; Lima MA; Liu S; Bardelang D; Hannon MJ
    J Am Chem Soc; 2020 Dec; 142(49):20651-20660. PubMed ID: 33215921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA.
    Lind KE; Du Z; Fujinaga K; Peterlin BM; James TL
    Chem Biol; 2002 Feb; 9(2):185-93. PubMed ID: 11880033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design.
    Andrianov AM; Anishchenko IV
    J Biomol Struct Dyn; 2009 Oct; 27(2):179-93. PubMed ID: 19583444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the RNA structural landscape of viral genomes.
    Andrews RJ; Baber L; Moss WN
    Methods; 2020 Nov; 183():57-67. PubMed ID: 31711930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.