BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34124432)

  • 1. Combining Experimental Isotherms, Minimalistic Simulations, and a Model to Understand and Predict Chemical Adsorption onto Montmorillonite Clays.
    Orr AA; Wang M; Beykal B; Ganesh HS; Hearon SE; Pistikopoulos EN; Phillips TD; Tamamis P
    ACS Omega; 2021 Jun; 6(22):14090-14103. PubMed ID: 34124432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Adsorption of Dieldrin by Parent and Processed Montmorillonite Clays.
    Hearon SE; Wang M; Phillips TD
    Environ Toxicol Chem; 2020 Mar; 39(3):517-525. PubMed ID: 31756776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the efficacy of broad-acting sorbents for environmental mixtures using isothermal analysis, mammalian cells, and H. vulgaris.
    Wang M; Chen Z; Rusyn I; Phillips TD
    J Hazard Mater; 2021 Apr; 408():124425. PubMed ID: 33162237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the interactions of bisphenol and phthalate compounds with unamended and carnitine-amended montmorillonite clays.
    Orr AA; He S; Wang M; Goodall A; Hearon SE; Phillips TD; Tamamis P
    Comput Chem Eng; 2020 Dec; 143():. PubMed ID: 33122868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays.
    Wang M; Rivenbark KJ; Phillips TD
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11417-11430. PubMed ID: 36097303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.
    Greathouse JA; Cygan RT
    Environ Sci Technol; 2006 Jun; 40(12):3865-71. PubMed ID: 16830554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of 2,4,6-trichlorophenol in model humic acid-clay systems.
    Wang XP; Shan XQ; Luo L; Zhang SZ; Wen B
    J Agric Food Chem; 2005 May; 53(9):3548-55. PubMed ID: 15853400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between viruses and clays in static and dynamic batch systems.
    Syngouna VI; Chrysikopoulos CV
    Environ Sci Technol; 2010 Jun; 44(12):4539-44. PubMed ID: 20496906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals.
    Wang M; Maki CR; Deng Y; Tian Y; Phillips TD
    Chem Res Toxicol; 2017 Sep; 30(9):1694-1701. PubMed ID: 28768106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.
    Lipson SM; Stotzky G
    Appl Environ Microbiol; 1983 Sep; 46(3):673-82. PubMed ID: 6639022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion of Montmorillonite Clays in Environmental Barrier Formulations to Reduce Skin Exposure to Water-Soluble Chemicals from Polluted Water.
    Wang M; Phillips TD
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35536196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of the atrazine pesticide interaction with pyrophyllite and Ca(2+) -montmorillonite clay surfaces.
    Belzunces B; Hoyau S; Benoit M; Tarrat N; Bessac F
    J Comput Chem; 2017 Jan; 38(3):133-143. PubMed ID: 27862038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays.
    Herrera P; Burghardt RC; Phillips TD
    Vet Microbiol; 2000 Jun; 74(3):259-72. PubMed ID: 10808094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of microcystin-LR onto kaolinite, illite and montmorillonite.
    Liu YL; Walker HW; Lenhart JJ
    Chemosphere; 2019 Apr; 220():696-705. PubMed ID: 30611067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of colloidal properties of natural and Al-pillared smectite and removal of copper ions from an aqueous solution.
    Sartor LR; de Azevedo AC; Andrade GR
    Environ Technol; 2015; 36(5-8):786-95. PubMed ID: 25253565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organically modified clays as binders of fumonisins in feedstocks.
    Baglieri A; Reyneri A; Gennari M; Nègre M
    J Environ Sci Health B; 2013; 48(9):776-83. PubMed ID: 23688228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.
    Montes-H G; Fritz B; Clement A; Michau N
    J Environ Manage; 2005 Oct; 77(1):35-46. PubMed ID: 15946786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of high affinity, high capacity clays for the equilibrium sorption of ergotamine.
    Huebner HJ; Lemke SL; Ottinger SE; Mayura K; Phillips TD
    Food Addit Contam; 1999 Apr; 16(4):159-71. PubMed ID: 10560569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of dye-clay complexes for removal of non-ionic organic compounds from aqueous solutions.
    Borisover M; Graber ER; Bercovich F; Gerstl Z
    Chemosphere; 2001 Aug; 44(5):1033-40. PubMed ID: 11513388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zirconium-modified natural clays for phosphate removal: Effect of clay minerals.
    Huo J; Min X; Wang Y
    Environ Res; 2021 Mar; 194():110685. PubMed ID: 33428913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.