These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34124682)
41. Zeeman Tunability of Andreev Bound States in van der Waals Tunnel Barriers. Dvir T; Aprili M; Quay CHL; Steinberg H Phys Rev Lett; 2019 Nov; 123(21):217003. PubMed ID: 31809137 [TBL] [Abstract][Full Text] [Related]
42. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. Aykol M; Hou B; Dhall R; Chang SW; Branham W; Qiu J; Cronin SB Nano Lett; 2014 May; 14(5):2426-30. PubMed ID: 24758201 [TBL] [Abstract][Full Text] [Related]
43. On-Demand Local Modification of High-T Ghosh S; Vaidya J; Datta S; Pandeya RP; Jangade DA; Kulkarni RN; Maiti K; Thamizhavel A; Deshmukh MM Adv Mater; 2020 Sep; 32(37):e2002220. PubMed ID: 32743859 [TBL] [Abstract][Full Text] [Related]
44. Printable two-dimensional superconducting monolayers. Li J; Song P; Zhao J; Vaklinova K; Zhao X; Li Z; Qiu Z; Wang Z; Lin L; Zhao M; Herng TS; Zuo Y; Jonhson W; Yu W; Hai X; Lyu P; Xu H; Yang H; Chen C; Pennycook SJ; Ding J; Teng J; Castro Neto AH; Novoselov KS; Lu J Nat Mater; 2021 Feb; 20(2):181-187. PubMed ID: 33106649 [TBL] [Abstract][Full Text] [Related]
45. Reversible Amorphous-Crystalline Phase Transformation in an Ultrathin van der Waals FeTe System. Jiang J; Xiong F; Sun L; Chen H; Zhu M; Xu W; Zhang J; Zhu Z ACS Appl Mater Interfaces; 2023 Oct; 15(40):47661-47668. PubMed ID: 37783452 [TBL] [Abstract][Full Text] [Related]
46. Low Resistivity and High Breakdown Current Density of 10 nm Diameter van der Waals TaSe Empante TA; Martinez A; Wurch M; Zhu Y; Geremew AK; Yamaguchi K; Isarraraz M; Rumyantsev S; Reed EJ; Balandin AA; Bartels L Nano Lett; 2019 Jul; 19(7):4355-4361. PubMed ID: 31244229 [TBL] [Abstract][Full Text] [Related]
47. Growth Model of van der Waals Epitaxy of Films: A Case of AlN Films on Multilayer Graphene/SiC. Xu Y; Cao B; Li Z; Cai D; Zhang Y; Ren G; Wang J; Shi L; Wang C; Xu K ACS Appl Mater Interfaces; 2017 Dec; 9(50):44001-44009. PubMed ID: 29181968 [TBL] [Abstract][Full Text] [Related]
48. Cross-Plane Carrier Transport in Van der Waals Layered Materials. Najmaei S; Neupane MR; Nichols BM; Burke RA; Mazzoni AL; Chin ML; Rhodes DA; Balicas L; Franklin AD; Dubey M Small; 2018 May; 14(20):e1703808. PubMed ID: 29659147 [TBL] [Abstract][Full Text] [Related]
49. Superfluid response of an atomically thin gate-tuned van der Waals superconductor. Jarjour A; Ferguson GM; Schaefer BT; Lee M; Loh YL; Trivedi N; Nowack KC Nat Commun; 2023 Apr; 14(1):2055. PubMed ID: 37045826 [TBL] [Abstract][Full Text] [Related]
50. Large-area single-layer MoSe2 and its van der Waals heterostructures. Shim GW; Yoo K; Seo SB; Shin J; Jung DY; Kang IS; Ahn CW; Cho BJ; Choi SY ACS Nano; 2014 Jul; 8(7):6655-62. PubMed ID: 24987802 [TBL] [Abstract][Full Text] [Related]
51. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Kim Y; Cruz SS; Lee K; Alawode BO; Choi C; Song Y; Johnson JM; Heidelberger C; Kong W; Choi S; Qiao K; Almansouri I; Fitzgerald EA; Kong J; Kolpak AM; Hwang J; Kim J Nature; 2017 Apr; 544(7650):340-343. PubMed ID: 28426001 [TBL] [Abstract][Full Text] [Related]
52. Enhanced Superconductivity and Critical Current Density Due to the Interaction of InSe Niu R; Li J; Zhen W; Xu F; Weng S; Yue Z; Meng X; Xia J; Hao N; Zhang C J Am Chem Soc; 2024 Jan; 146(2):1244-1249. PubMed ID: 38180816 [TBL] [Abstract][Full Text] [Related]
53. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe Xu X; Pan Y; Liu S; Han B; Gu P; Li S; Xu W; Peng Y; Han Z; Chen J; Gao P; Ye Y Science; 2021 Apr; 372(6538):195-200. PubMed ID: 33833124 [TBL] [Abstract][Full Text] [Related]
54. Ultrahigh-Detectivity Photodetectors with Van der Waals Epitaxial CdTe Single-Crystalline Films. Lian Q; Zhu X; Wang X; Bai W; Yang J; Zhang Y; Qi R; Huang R; Hu W; Tang X; Wang J; Chu J Small; 2019 Apr; 15(17):e1900236. PubMed ID: 30932339 [TBL] [Abstract][Full Text] [Related]
55. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces. Wang J; Nguyen AV Adv Colloid Interface Sci; 2017 Dec; 250():54-63. PubMed ID: 29100682 [TBL] [Abstract][Full Text] [Related]
56. Enhanced Electrical and Optoelectronic Characteristics of Few-Layer Type-II SnSe/MoS Yang S; Wu M; Wang B; Zhao LD; Huang L; Jiang C; Wei SH ACS Appl Mater Interfaces; 2017 Dec; 9(48):42149-42155. PubMed ID: 29134796 [TBL] [Abstract][Full Text] [Related]
57. 2D Bi Wang S; Li Y; Ng A; Hu Q; Zhou Q; Li X; Liu H Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32842700 [TBL] [Abstract][Full Text] [Related]
58. Intercalate Superconductivity and van der Waals Equation. Benjamin SM ACS Mater Au; 2022 Jul; 2(4):436-439. PubMed ID: 35928829 [TBL] [Abstract][Full Text] [Related]
59. Photocurrent generation with two-dimensional van der Waals semiconductors. Buscema M; Island JO; Groenendijk DJ; Blanter SI; Steele GA; van der Zant HS; Castellanos-Gomez A Chem Soc Rev; 2015 Jun; 44(11):3691-718. PubMed ID: 25909688 [TBL] [Abstract][Full Text] [Related]
60. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoSâ‚‚ van der Waals heterostructures. Diaz HC; Avila J; Chen C; Addou R; Asensio MC; Batzill M Nano Lett; 2015 Feb; 15(2):1135-40. PubMed ID: 25629211 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]