These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 34124880)

  • 1. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems.
    Jiang C; Li X; Lian SWM; Ying Y; Ho JS; Ping J
    ACS Nano; 2021 Jun; 15(6):9328-9354. PubMed ID: 34124880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
    Osorio de la Rosa E; Vázquez Castillo J; Carmona Campos M; Barbosa Pool GR; Becerra Nuñez G; Castillo Atoche A; Ortegón Aguilar J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities.
    Izadgoshasb I
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review.
    Prauzek M; Konecny J; Borova M; Janosova K; Hlavica J; Musilek P
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30060513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
    Wu F; Rüdiger C; Yuce MR
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications.
    Mishu MK; Rokonuzzaman M; Pasupuleti J; Shakeri M; Rahman KS; Binzaid S; Tiong SK; Amin N
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33917665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radio Frequency Identification and Sensing Techniques and Their Applications-A Review of the State-of-the-Art.
    Cui L; Zhang Z; Gao N; Meng Z; Li Z
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance hybrid nanogenerator for self-powered wireless multi-sensing microsystems.
    Wen DL; Huang P; Deng HT; Zhang XR; Wang YL; Zhang XS
    Microsyst Nanoeng; 2023; 9():94. PubMed ID: 37484504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Power Transfer in Wirelessly Powered Sensor Networks: A Review of Recent Progress.
    Huda SMA; Arafat MY; Moh S
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in the Energy Harvesting Technology-From Self-Powered Sensors to Self-Sustained IoT, and New Applications.
    Liu L; Guo X; Liu W; Lee C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.
    Jin L; Chen J; Zhang B; Deng W; Zhang L; Zhang H; Huang X; Zhu M; Yang W; Wang ZL
    ACS Nano; 2016 Aug; 10(8):7874-81. PubMed ID: 27391273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting.
    Ryu H; Yoon HJ; Kim SW
    Adv Mater; 2019 Aug; 31(34):e1802898. PubMed ID: 30809883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review.
    Tang X; Wang X; Cattley R; Gu F; Ball AD
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Energy Harvesting Design for On-Body Internet-of-Things (IoT) Networks.
    Saraereh OA; Alsaraira A; Khan I; Choi BJ
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies.
    Hu X; Bao X; Zhang M; Fang S; Liu K; Wang J; Liu R; Kim SH; Baughman RH; Ding J
    Adv Mater; 2023 Dec; 35(49):e2303035. PubMed ID: 37209369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Powered Sensing for Smart Agriculture by Electromagnetic-Triboelectric Hybrid Generator.
    Zhang B; Zhang S; Li W; Gao Q; Zhao D; Wang ZL; Cheng T
    ACS Nano; 2021 Dec; 15(12):20278-20286. PubMed ID: 34841851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants.
    Sherazi HHR; Zorbas D; O'Flynn B
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Correlation between Temperature of IoT Microcontroller Devices and Blockchain Energy Consumption in Wireless Sensor Networks.
    Arachchige KG; Branch P; But J
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges.
    Sripadmanabhan Indira S; Aravind Vaithilingam C; Oruganti KSP; Mohd F; Rahman S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31137520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.