These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34124893)

  • 1. Improving Docking Power for Short Peptides Using Random Forest.
    Sanner MF; Dieguez L; Forli S; Lis E
    J Chem Inf Model; 2021 Jun; 61(6):3074-3090. PubMed ID: 34124893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
    Santos KB; Guedes IA; Karl ALM; Dardenne LE
    J Chem Inf Model; 2020 Feb; 60(2):667-683. PubMed ID: 31922754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking Performance.
    Hauser AS; Windshügel B
    J Chem Inf Model; 2016 Jan; 56(1):188-200. PubMed ID: 26651532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking small peptides remains a great challenge: an assessment using AutoDock Vina.
    Rentzsch R; Renard BY
    Brief Bioinform; 2015 Nov; 16(6):1045-56. PubMed ID: 25900849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina.
    Macari G; Toti D; Pasquadibisceglie A; Polticelli F
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Flexible Peptide Docking by Conformer Generation and Ensemble Docking of Peptides.
    Zhou P; Li B; Yan Y; Jin B; Wang L; Huang SY
    J Chem Inf Model; 2018 Jun; 58(6):1292-1302. PubMed ID: 29738247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LEADS-FRAG: A Benchmark Data Set for Assessment of Fragment Docking Performance.
    Chachulski L; Windshügel B
    J Chem Inf Model; 2020 Dec; 60(12):6544-6554. PubMed ID: 33289563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D; Politi R; Tropsha A
    J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes.
    Zhang Y; Sanner MF
    Bioinformatics; 2019 Dec; 35(24):5121-5127. PubMed ID: 31161213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Protein-Peptide Docking Results via Pose-Clustering and Rescoring with a Combined Knowledge-Based and MM-GBSA Scoring Function.
    Tao H; Zhang Y; Huang SY
    J Chem Inf Model; 2020 Apr; 60(4):2377-2387. PubMed ID: 32267149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein-Cyclic Peptide Complexes.
    Zhao H; Jiang D; Shen C; Zhang J; Zhang X; Wang X; Nie D; Hou T; Kang Y
    J Chem Inf Model; 2024 Mar; 64(6):2112-2124. PubMed ID: 38483249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking of different molecular docking methods for protein-peptide docking.
    Agrawal P; Singh H; Srivastava HK; Singh S; Kishore G; Raghava GPS
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):426. PubMed ID: 30717654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures.
    Bao J; He X; Zhang JZH
    J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma.
    Carlson HA; Smith RD; Damm-Ganamet KL; Stuckey JA; Ahmed A; Convery MA; Somers DO; Kranz M; Elkins PA; Cui G; Peishoff CE; Lambert MH; Dunbar JB
    J Chem Inf Model; 2016 Jun; 56(6):1063-77. PubMed ID: 27149958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses.
    Boyles F; Deane CM; Morris GM
    J Chem Inf Model; 2022 Nov; 62(22):5329-5341. PubMed ID: 34469150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.