These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34125091)

  • 21. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy.
    Dillard RS; Hampton CM; Strauss JD; Ke Z; Altomara D; Guerrero-Ferreira RC; Kiss G; Wright ER
    Microsc Microanal; 2018 Aug; 24(4):406-419. PubMed ID: 30175702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic resolution cryo electron microscopy of macromolecular complexes.
    Zhou ZH
    Adv Protein Chem Struct Biol; 2011; 82():1-35. PubMed ID: 21501817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE.
    Moriya T; Saur M; Stabrin M; Merino F; Voicu H; Huang Z; Penczek PA; Raunser S; Gatsogiannis C
    J Vis Exp; 2017 May; (123):. PubMed ID: 28570515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress Towards CryoEM: Negative-Stain Procedures for Biological Samples.
    Gonen S
    Methods Mol Biol; 2021; 2215():115-123. PubMed ID: 33368001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From Tube to Structure: SPA Cryo-EM Workflow Using Apoferritin as an Example.
    Diebolder CA; Dillard RS; Renault L
    Methods Mol Biol; 2021; 2305():229-256. PubMed ID: 33950393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A unified framework for packing deformable and non-deformable subcellular structures in crowded cryo-electron tomogram simulation.
    Liu S; Ban X; Zeng X; Zhao F; Gao Y; Wu W; Zhang H; Chen F; Hall T; Gao X; Xu M
    BMC Bioinformatics; 2020 Sep; 21(1):399. PubMed ID: 32907544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM.
    Sanchez RM; Zhang Y; Chen W; Dietrich L; Kudryashev M
    Nat Commun; 2020 Jul; 11(1):3709. PubMed ID: 32709843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retrospect and Prospect of Single Particle Cryo-Electron Microscopy: The Class of Integral Membrane Proteins as an Example.
    Akbar S; Mozumder S; Sengupta J
    J Chem Inf Model; 2020 May; 60(5):2448-2457. PubMed ID: 32163280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deformed grids for single-particle cryo-electron microscopy of specimens exhibiting a preferred orientation.
    Liu Y; Meng X; Liu Z
    J Struct Biol; 2013 Jun; 182(3):255-8. PubMed ID: 23537848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Obtaining high-resolution images of biological macromolecules by using a cryo-electron microscope with a liquid-helium cooled stage.
    Mitsuoka K
    Micron; 2011 Feb; 42(2):100-6. PubMed ID: 20869255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images.
    Al-Azzawi A; Ouadou A; Tanner JJ; Cheng J
    BMC Bioinformatics; 2019 Jun; 20(1):326. PubMed ID: 31195977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live Analysis and Reconstruction of Single-Particle Cryo-Electron Microscopy Data with CryoFLARE.
    Schenk AD; Cavadini S; Thomä NH; Genoud C
    J Chem Inf Model; 2020 May; 60(5):2561-2569. PubMed ID: 32233514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Themes in CryoEM─Single Particle Analysis Image Processing.
    Vilas JL; Carazo JM; Sorzano COS
    Chem Rev; 2022 Sep; 122(17):13915-13951. PubMed ID: 35785962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy.
    Thompson RF; Iadanza MG; Hesketh EL; Rawson S; Ranson NA
    Nat Protoc; 2019 Jan; 14(1):100-118. PubMed ID: 30487656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections.
    Verbeke EJ; Zhou Y; Horton AP; Mallam AL; Taylor DW; Marcotte EM
    J Struct Biol; 2020 Jan; 209(1):107416. PubMed ID: 31726096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods for Preparing Cryo-EM Grids of Large Macromolecular Complexes.
    Chang L; Barford D
    Methods Mol Biol; 2018; 1844():209-215. PubMed ID: 30242712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method to achieve homogeneous dispersion of large transmembrane complexes within the holes of carbon films for electron cryomicroscopy.
    Cheung M; Kajimura N; Makino F; Ashihara M; Miyata T; Kato T; Namba K; Blocker AJ
    J Struct Biol; 2013 Apr; 182(1):51-6. PubMed ID: 23356983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules.
    Yao R; Qian J; Huang Q
    Bioinformatics; 2020 Feb; 36(4):1252-1259. PubMed ID: 31584618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM.
    Stark H
    Methods Enzymol; 2010; 481():109-26. PubMed ID: 20887855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-body Refinement of Cryo-EM Images in RELION.
    Nakane T; Scheres SHW
    Methods Mol Biol; 2021; 2215():145-160. PubMed ID: 33368003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.