These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 34125409)
1. Using "-omics" Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field. Abood A; Farber CR Curr Osteoporos Rep; 2021 Aug; 19(4):369-380. PubMed ID: 34125409 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome-wide association study and eQTL colocalization identify potentially causal genes responsible for human bone mineral density GWAS associations. Al-Barghouthi BM; Rosenow WT; Du KP; Heo J; Maynard R; Mesner L; Calabrese G; Nakasone A; Senwar B; Gerstenfeld L; Larner J; Ferguson V; Ackert-Bicknell C; Morgan E; Brautigan D; Farber CR Elife; 2022 Nov; 11():. PubMed ID: 36416764 [TBL] [Abstract][Full Text] [Related]
3. Identification of Known and Novel Long Noncoding RNAs Potentially Responsible for the Effects of Bone Mineral Density (BMD) Genomewide Association Study (GWAS) Loci. Abood A; Mesner L; Rosenow W; Al-Barghouthi BM; Horowitz N; Morgan EF; Gerstenfeld LC; Farber CR J Bone Miner Res; 2022 Aug; 37(8):1500-1510. PubMed ID: 35695880 [TBL] [Abstract][Full Text] [Related]
4. Integration of summary data from GWAS and eQTL studies identified novel causal BMD genes with functional predictions. Meng XH; Chen XD; Greenbaum J; Zeng Q; You SL; Xiao HM; Tan LJ; Deng HW Bone; 2018 Aug; 113():41-48. PubMed ID: 29763751 [TBL] [Abstract][Full Text] [Related]
5. Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Calabrese GM; Mesner LD; Stains JP; Tommasini SM; Horowitz MC; Rosen CJ; Farber CR Cell Syst; 2017 Jan; 4(1):46-59.e4. PubMed ID: 27866947 [TBL] [Abstract][Full Text] [Related]
6. Integrative genomics analysis of eQTL and GWAS summary data identifies PPP1CB as a novel bone mineral density risk genes. Zhai Y; Yu L; Shao Y; Wang J Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32266926 [TBL] [Abstract][Full Text] [Related]
7. Using GWAS to identify novel therapeutic targets for osteoporosis. Sabik OL; Farber CR Transl Res; 2017 Mar; 181():15-26. PubMed ID: 27837649 [TBL] [Abstract][Full Text] [Related]
8. Twelve New Genomic Loci Associated With Bone Mineral Density. Liu L; Zhao M; Xie ZG; Liu J; Peng HP; Pei YF; Sun HP; Zhang L Front Endocrinol (Lausanne); 2020; 11():243. PubMed ID: 32390946 [TBL] [Abstract][Full Text] [Related]
9. Integrative Analysis of Genomics and Transcriptome Data to Identify Potential Functional Genes of BMDs in Females. Chen YC; Guo YF; He H; Lin X; Wang XF; Zhou R; Li WT; Pan DY; Shen J; Deng HW J Bone Miner Res; 2016 May; 31(5):1041-9. PubMed ID: 26748680 [TBL] [Abstract][Full Text] [Related]
10. Integrating transcriptome-wide association study and mRNA expression profiling identifies novel genes associated with bone mineral density. Ma M; Huang DG; Liang X; Zhang L; Cheng S; Cheng B; Qi X; Li P; Du Y; Liu L; Zhao Y; Ding M; Wen Y; Guo X; Zhang F Osteoporos Int; 2019 Jul; 30(7):1521-1528. PubMed ID: 30993394 [TBL] [Abstract][Full Text] [Related]
11. Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method. Hu Y; Tan LJ; Chen XD; Greenbaum J; Deng HW Bone; 2018 Dec; 117():6-14. PubMed ID: 30172742 [TBL] [Abstract][Full Text] [Related]
12. Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data. Sabik OL; Calabrese GM; Taleghani E; Ackert-Bicknell CL; Farber CR Cell Rep; 2020 Sep; 32(11):108145. PubMed ID: 32937138 [TBL] [Abstract][Full Text] [Related]
13. Gene-based GWAS analysis for consecutive studies of GEFOS. Zhu W; Xu C; Zhang JG; He H; Wu KH; Zhang L; Zeng Y; Zhou Y; Su KJ; Deng HW Osteoporos Int; 2018 Dec; 29(12):2645-2658. PubMed ID: 30306226 [TBL] [Abstract][Full Text] [Related]
14. Integrative analysis of GWASs, human protein interaction, and gene expression identified gene modules associated with BMDs. He H; Zhang L; Li J; Wang YP; Zhang JG; Shen J; Guo YF; Deng HW J Clin Endocrinol Metab; 2014 Nov; 99(11):E2392-9. PubMed ID: 25119315 [TBL] [Abstract][Full Text] [Related]
15. Insights into the genetics of osteoporosis from recent genome-wide association studies. Zheng HF; Spector TD; Richards JB Expert Rev Mol Med; 2011 Aug; 13():e28. PubMed ID: 21867596 [TBL] [Abstract][Full Text] [Related]
17. Identification of Novel Pleiotropic SNPs Associated with Osteoporosis and Rheumatoid Arthritis. Liu YQ; Liu Y; Zhang Q; Xiao T; Deng HW Calcif Tissue Int; 2021 Jul; 109(1):17-31. PubMed ID: 33740106 [TBL] [Abstract][Full Text] [Related]
18. Dissecting the Genetics of Osteoporosis using Systems Approaches. Al-Barghouthi BM; Farber CR Trends Genet; 2019 Jan; 35(1):55-67. PubMed ID: 30470485 [TBL] [Abstract][Full Text] [Related]
19. Meta-analysis of gene-based genome-wide association studies of bone mineral density in Chinese and European subjects. Cheung CL; Sham PC; Xiao SM; Bow CH; Kung AW Osteoporos Int; 2012 Jan; 23(1):131-42. PubMed ID: 21927923 [TBL] [Abstract][Full Text] [Related]
20. Gene Expression and RNA Splicing Imputation Identifies Novel Candidate Genes Associated with Osteoporosis. Liu Y; Shen H; Greenbaum J; Liu A; Su KJ; Zhang LS; Zhang L; Tian Q; Hu HG; He JS; Deng HW J Clin Endocrinol Metab; 2020 Dec; 105(12):e4742-57. PubMed ID: 32827035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]