These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34125518)

  • 21. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.
    Yamada Y; Hozumi K; Aso A; Hotta A; Toma K; Katagiri F; Kikkawa Y; Nomizu M
    Biomaterials; 2012 Jun; 33(16):4118-25. PubMed ID: 22410171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour.
    Kaur H; Roy S
    J Mater Chem B; 2021 Aug; 9(29):5898-5913. PubMed ID: 34263278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles.
    Zhou M; Ulijn RV; Gough JE
    J Tissue Eng; 2014; 5():2041731414531593. PubMed ID: 24812581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture.
    Hilderbrand AM; Ford EM; Guo C; Sloppy JD; Kloxin AM
    Biomater Sci; 2020 Mar; 8(5):1256-1269. PubMed ID: 31854388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels.
    Quigley E; Johnson J; Liyanage W; Nilsson BL
    Soft Matter; 2020 Nov; 16(44):10158-10168. PubMed ID: 33035281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators.
    Abraham BL; Liyanage W; Nilsson BL
    Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility.
    Li W; Hu X; Chen J; Wei Z; Song C; Huang R
    J Mater Sci Mater Med; 2020 Jul; 31(8):73. PubMed ID: 32729101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels.
    Liyanage W; Ardoña HA; Mao HQ; Tovar JD
    Bioconjug Chem; 2017 Mar; 28(3):751-759. PubMed ID: 28292179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Three-Dimensional Cell Culture Scaffolds Using Laminin Peptide-Conjugated Agarose Microgels.
    Yamada Y; Yoshida C; Hamada K; Kikkawa Y; Nomizu M
    Biomacromolecules; 2020 Sep; 21(9):3765-3771. PubMed ID: 32701263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications.
    Diaferia C; Morelli G; Accardo A
    J Mater Chem B; 2019 Sep; 7(34):5142-5155. PubMed ID: 31380554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Assembling Hydrogel Structures for Neural Tissue Repair.
    Peressotti S; Koehl GE; Goding JA; Green RA
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4136-4163. PubMed ID: 33780230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds.
    Jayawarna V; Smith A; Gough JE; Ulijn RV
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):535-7. PubMed ID: 17511646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Evaluation of Short Self-Assembling Depsipeptides as Bioactive and Biodegradable Hydrogels.
    Eckes KM; Baek K; Suggs LJ
    ACS Omega; 2018 Feb; 3(2):1635-1644. PubMed ID: 30023812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction.
    Lim HJ; Khan Z; Lu X; Perera TH; Wilems TS; Ravivarapu KT; Smith Callahan LA
    Acta Biomater; 2018 Apr; 71():271-278. PubMed ID: 29526829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture.
    Qi X; Su T; Tong X; Xiong W; Zeng Q; Qian Y; Zhou Z; Wu X; Li Z; Shen L; He X; Xu C; Chen M; Li Y; Shen J
    Carbohydr Polym; 2019 Nov; 224():115208. PubMed ID: 31472869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks.
    Çelik E; Bayram C; Akçapınar R; Türk M; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():221-229. PubMed ID: 27207058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composite of Peptide-Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bio-Inspired Soft Material.
    Chakraborty P; Ghosh M; Schnaider L; Adadi N; Ji W; Bychenko D; Dvir T; Adler-Abramovich L; Gazit E
    Macromol Rapid Commun; 2019 Sep; 40(18):e1900175. PubMed ID: 31347237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.