BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34125530)

  • 1. Accuracy of Alternate Nonpolarizable Force Fields for the Determination of Protein-Ligand Binding Affinities Dominated by Cation-π Interactions.
    Liu H; Fu H; Chipot C; Shao X; Cai W
    J Chem Theory Comput; 2021 Jul; 17(7):3908-3915. PubMed ID: 34125530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Description of Cation-π Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost.
    Liu H; Fu H; Shao X; Cai W; Chipot C
    J Chem Theory Comput; 2020 Oct; 16(10):6397-6407. PubMed ID: 32852943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrections in the CHARMM36 Parametrization of Chloride Interactions with Proteins, Lipids, and Alkali Cations, and Extension to Other Halide Anions.
    Orabi EA; Öztürk TN; Bernhardt N; Faraldo-Gómez JD
    J Chem Theory Comput; 2021 Oct; 17(10):6240-6261. PubMed ID: 34516741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Description of Solvent-Exposed Salt Bridges with a Non-polarizable Force Field Incorporating Solvent Effects.
    Liu H; Fu H; Chipot C; Shao X; Cai W
    J Chem Inf Model; 2022 Aug; 62(16):3863-3873. PubMed ID: 35920605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation-π Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field.
    Khan HM; MacKerell AD; Reuter N
    J Chem Theory Comput; 2019 Jan; 15(1):7-12. PubMed ID: 30562013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Force Field Description of Tyrosine-Choline Cation-π Interactions: QM Investigation of Phenol-N(Me)
    Khan HM; Grauffel C; Broer R; MacKerell AD; Havenith RW; Reuter N
    J Chem Theory Comput; 2016 Nov; 12(11):5585-5595. PubMed ID: 27682345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explicit Representation of Cation-π Interactions in Force Fields with 1/
    Turupcu A; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2020 Nov; 16(11):7184-7194. PubMed ID: 33048555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the London Dispersion Coefficients of Protein Force Fields Using the Exchange-Hole Dipole Moment Model.
    Walters ET; Mohebifar M; Johnson ER; Rowley CN
    J Phys Chem B; 2018 Jul; 122(26):6690-6701. PubMed ID: 29877703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Modeling of Halogenated Ligand-Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields.
    Lin FY; MacKerell AD
    J Chem Inf Model; 2019 Jan; 59(1):215-228. PubMed ID: 30418023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins.
    Lin FY; MacKerell AD
    J Comput Chem; 2020 Feb; 41(5):439-448. PubMed ID: 31518010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed potential of mean force studies on host-guest systems from the SAMPL6 challenge.
    Song LF; Bansal N; Zheng Z; Merz KM
    J Comput Aided Mol Des; 2018 Oct; 32(10):1013-1026. PubMed ID: 30143917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarizable AMOEBA Model for Simulating Mg
    Delgado JM; Nagy PR; Varma S
    J Chem Inf Model; 2024 Jan; 64(2):378-392. PubMed ID: 38051630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation-pi interactions: an energy decomposition analysis and its implication in delta-opioid receptor-ligand binding.
    Mo Y; Subramanian G; Gao J; Ferguson DM
    J Am Chem Soc; 2002 May; 124(17):4832-7. PubMed ID: 11971733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes.
    Miranda WE; Noskov SY; Valiente PA
    J Chem Inf Model; 2015 Sep; 55(9):1867-77. PubMed ID: 26180998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding Thermodynamics and Interaction Patterns of Inhibitor-Major Urinary Protein-I Binding from Extensive Free-Energy Calculations: Benchmarking AMBER Force Fields.
    Huai Z; Shen Z; Sun Z
    J Chem Inf Model; 2021 Jan; 61(1):284-297. PubMed ID: 33307679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-energy calculations of protein-ligand cation-pi and amino-pi interactions: from vacuum to proteinlike environments.
    Biot C; Buisine E; Rooman M
    J Am Chem Soc; 2003 Nov; 125(46):13988-94. PubMed ID: 14611235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overbinding and Qualitative and Quantitative Changes Caused by Simple Na
    Tolmachev DA; Boyko OS; Lukasheva NV; Martinez-Seara H; Karttunen M
    J Chem Theory Comput; 2020 Jan; 16(1):677-687. PubMed ID: 31755710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified Protein-Water Interactions in CHARMM36m for Thermodynamics and Kinetics of Proteins in Dilute and Crowded Solutions.
    Matsubara D; Kasahara K; Dokainish HM; Oshima H; Sugita Y
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes.
    Sure R; Grimme S
    J Chem Theory Comput; 2015 Aug; 11(8):3785-801. PubMed ID: 26574460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonbonded Force Field Parameters from MBIS Partitioning of the Molecular Electron Density Improve Binding Affinity Predictions of the T4-Lysozyme Double Mutant.
    Macaya L; González D; Vöhringer-Martinez E
    J Chem Inf Model; 2024 Apr; 64(8):3269-3277. PubMed ID: 38546407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.