These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34125600)

  • 1. Taming the Duplication-Loss-Coalescence Model with Integer Linear Programming.
    Paszek J; Markin A; Górecki P; Eulenstein O
    J Comput Biol; 2021 Aug; 28(8):758-773. PubMed ID: 34125600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence.
    Chaudhary R; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S11. PubMed ID: 22759416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cophylogenetic Reconciliation with ILP.
    Wieseke N; Hartmann T; Bernt M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1227-35. PubMed ID: 26671795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the computational complexity of the maximum parsimony reconciliation problem in the duplication-loss-coalescence model.
    Bork D; Cheng R; Wang J; Sung J; Libeskind-Hadas R
    Algorithms Mol Biol; 2017; 12():6. PubMed ID: 28316640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models.
    Chauve C; Ponty Y; Wallner M
    J Math Biol; 2020 Apr; 80(5):1353-1388. PubMed ID: 32060618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ILP solution for the gene duplication problem.
    Chang WC; Burleigh GJ; Fernández-Baca DF; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S14. PubMed ID: 21342543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem.
    Górecki P; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S14. PubMed ID: 22759419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact solutions for species tree inference from discordant gene trees.
    Chang WC; Górecki P; Eulenstein O
    J Bioinform Comput Biol; 2013 Oct; 11(5):1342005. PubMed ID: 24131054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Optimal Reconciliations Under the Duplication-Loss-Coalescence Model.
    Du H; Ong YS; Knittel M; Mawhorter R; Liu N; Gross G; Tojo R; Libeskind-Hadas R; Wu YC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2144-2156. PubMed ID: 31199267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.
    Wu YC; Rasmussen MD; Bansal MS; Kellis M
    Genome Res; 2014 Mar; 24(3):475-86. PubMed ID: 24310000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models.
    Bansal MS; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S42. PubMed ID: 20122216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bijective Diameters of Gene Tree Parsimony Costs.
    Gorecki P; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1723-1727. PubMed ID: 28792904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Unconstrained Diameters of the Duplication-Loss Cost and the Loss Cost.
    Gorecki P; Eulenstein O; Tiuryn J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2125-2135. PubMed ID: 31150345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum likelihood models and algorithms for gene tree evolution with duplications and losses.
    Górecki P; Burleigh GJ; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S15. PubMed ID: 21342544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed integer linear programming for maximum-parsimony phylogeny inference.
    Sridhar S; Lam F; Blelloch GE; Ravi R; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):323-31. PubMed ID: 18670037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Algorithms for Genomic Duplication Models.
    Paszek J; Gorecki P
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1515-1524. PubMed ID: 28541223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring Pareto-optimal reconciliations across multiple event costs under the duplication-loss-coalescence model.
    Mawhorter R; Liu N; Libeskind-Hadas R; Wu YC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 20):639. PubMed ID: 31842732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring Optimal Species Trees in the Presence of Gene Duplication and Loss: Beyond Rooted Gene Trees.
    Bayzid MS
    J Comput Biol; 2023 Feb; 30(2):161-175. PubMed ID: 36251762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species.
    Rogers J; Fishberg A; Youngs N; Wu YC
    BMC Bioinformatics; 2017 Jun; 18(1):292. PubMed ID: 28583091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.