BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 34125718)

  • 41. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.
    Cheng Y; Zhou S; Hu P; Zhao G; Li Y; Zhang X; Han W
    Sci Rep; 2017 May; 7(1):1439. PubMed ID: 28469261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A hierarchically combined reduced graphene oxide/Nickel oxide hybrid supercapacitor device demonstrating compliable flexibility and high energy density.
    Deng BW; Yang Y; Liu YX; Yin B; Yang MB
    J Colloid Interface Sci; 2022 Jul; 618():399-410. PubMed ID: 35358805
    [TBL] [Abstract][Full Text] [Related]  

  • 43.
    Suktha P; Chiochan P; Krittayavathananon A; Sarawutanukul S; Sethuraman S; Sawangphruk M
    RSC Adv; 2019 Sep; 9(49):28569-28575. PubMed ID: 35529617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabricating 3D Macroscopic Graphene-Based Architectures with Outstanding Flexibility by the Novel Liquid Drop/Colloid Flocculation Approach for Energy Storage Applications.
    Han M; Jayakumar A; Li Z; Zhao Q; Zhang J; Jiang X; Guo X; Wang R; Xu C; Song S; Lee JM; Hu N
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):21991-22001. PubMed ID: 29939002
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor.
    Li Y; Kang Z; Yan X; Cao S; Li M; Guo Y; Huan Y; Wen X; Zhang Y
    Nanoscale; 2018 May; 10(19):9360-9368. PubMed ID: 29737983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible Asymmetric Supercapacitor Based on Functionalized Reduced Graphene Oxide Aerogels with Wide Working Potential Window.
    Bora A; Mohan K; Doley S; Dolui SK
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7996-8009. PubMed ID: 29470052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scalable syntheses of three-dimensional graphene nanoribbon aerogels from bacterial cellulose for supercapacitors.
    Cao L; Liu L; Chen X; Huang M; Wang X; Long J
    Nanotechnology; 2020 Feb; 31(9):095403. PubMed ID: 31726433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanocellulose-based aerogel electrodes for supercapacitors: A review.
    Nargatti KI; Subhedar AR; Ahankari SS; Grace AN; Dufresne A
    Carbohydr Polym; 2022 Dec; 297():120039. PubMed ID: 36184147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchical Mn
    Fan L; Zhang Y; Guo Z; Sun B; Tian D; Feng Y; Zhang N; Sun K
    Chemistry; 2020 Jul; 26(42):9314-9318. PubMed ID: 31523882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range.
    Shabangoli Y; Rahmanifar MS; Noori A; El-Kady MF; Kaner RB; Mousavi MF
    ACS Nano; 2019 Nov; 13(11):12567-12576. PubMed ID: 31633927
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications.
    Garcia-Bordejé E; Benito AM; Maser WK
    Adv Colloid Interface Sci; 2021 Jun; 292():102420. PubMed ID: 33934004
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sea Urchin-Like NiCo-LDH Hollow Spheres Anchored on 3D Graphene Aerogel for High-Performance Supercapacitors.
    Tong H; Li L; Wu C; Tao Z; Fang J; Guan C; Zhang X
    ChemSusChem; 2024 Jun; ():e202400142. PubMed ID: 38888714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SC-CO
    Sarno M; Baldino L; Scudieri C; Cardea S; Ciambelli P; Reverchon E
    Nanotechnology; 2017 May; 28(20):204001. PubMed ID: 28319034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Layer-by-layer assembled polyaniline/carbon nanomaterial-coated cellulosic aerogel electrodes for high-capacitance supercapacitor applications.
    Lyu S; Chen Y; Han S; Guo L; Chen Z; Lu Y; Chen Y; Yang N; Wang S
    RSC Adv; 2018 Apr; 8(24):13191-13199. PubMed ID: 35542538
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials.
    Chen S; Duan J; Tang Y; Zhang Qiao S
    Chemistry; 2013 May; 19(22):7118-24. PubMed ID: 23553792
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Well-Ordered Oxygen-Deficient CoMoO
    Chi K; Zhang Z; Lv Q; Xie C; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6044-6053. PubMed ID: 28102070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Supercapacitive brophene-graphene aerogel as elastic-electrochemical dielectric layer for sensitive pressure sensors.
    Long C; Xie X; Fu J; Wang Q; Guo H; Zeng W; Wei N; Wang S; Xiong Y
    J Colloid Interface Sci; 2021 Nov; 601():355-364. PubMed ID: 34087596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material.
    Wang CC; Chen HC; Lu SY
    Chemistry; 2014 Jan; 20(2):517-23. PubMed ID: 24327570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity.
    Li C; Yang J; Pachfule P; Li S; Ye MY; Schmidt J; Thomas A
    Nat Commun; 2020 Sep; 11(1):4712. PubMed ID: 32948768
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents.
    Sui ZY; Meng YN; Xiao PW; Zhao ZQ; Wei ZX; Han BH
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1431-8. PubMed ID: 25545306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.