These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 34125718)
101. Carbon Transition-metal Oxide Electrodes: Understanding the Role of Surface Engineering for High Energy Density Supercapacitors. Tomboc GM; Tesfaye Gadisa B; Jun M; Chaudhari NK; Kim H; Lee K Chem Asian J; 2020 Jun; 15(11):1628-1647. PubMed ID: 32301268 [TBL] [Abstract][Full Text] [Related]
102. High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets. Tabrizi AG; Arsalani N; Mohammadi A; Ghadimi LS; Ahadzadeh I J Colloid Interface Sci; 2018 Dec; 531():369-381. PubMed ID: 30041114 [TBL] [Abstract][Full Text] [Related]
103. Synthesis of graphene aerogel with high electrical conductivity. Worsley MA; Pauzauskie PJ; Olson TY; Biener J; Satcher JH; Baumann TF J Am Chem Soc; 2010 Oct; 132(40):14067-9. PubMed ID: 20860374 [TBL] [Abstract][Full Text] [Related]
104. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. Guan C; Liu J; Wang Y; Mao L; Fan Z; Shen Z; Zhang H; Wang J ACS Nano; 2015 May; 9(5):5198-207. PubMed ID: 25868870 [TBL] [Abstract][Full Text] [Related]
105. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites. Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168 [TBL] [Abstract][Full Text] [Related]
106. Investigation of modified graphene for energy storage applications. Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171 [TBL] [Abstract][Full Text] [Related]
107. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Ren L; Hui KN; Hui KS; Liu Y; Qi X; Zhong J; Du Y; Yang J Sci Rep; 2015 Sep; 5():14229. PubMed ID: 26382852 [TBL] [Abstract][Full Text] [Related]
108. Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. Gao H; Yang F; Zheng Y; Zhang Q; Hao J; Zhang S; Zheng H; Chen J; Liu H; Guo Z ACS Appl Mater Interfaces; 2019 Feb; 11(5):5373-5379. PubMed ID: 30632744 [TBL] [Abstract][Full Text] [Related]
110. Nitrogen Doped Carbons Derived From Graphene Aerogel Templated Triazine-Based Conjugated Microporous Polymers for High-Performance Supercapacitors. Peng L; Guo Q; Ai Z; Zhao Y; Liu Y; Wei D Front Chem; 2019; 7():142. PubMed ID: 31058127 [TBL] [Abstract][Full Text] [Related]
111. Boosting the energy storage performance of V Ganganboina AB; Park EY; Doong RA Nanoscale; 2020 Aug; 12(32):16944-16955. PubMed ID: 32776060 [TBL] [Abstract][Full Text] [Related]
112. Compression-tolerant supercapacitor based on NiCo2O4/Ti3C2Tx MXene/reduced graphene oxide composite aerogel with insights from density functional theory simulations. Zhang M; Jiang D; Jin F; Sun Y; Wang J; Jiang M; Cao J; Zhang B; Liu J J Colloid Interface Sci; 2023 Apr; 636():204-215. PubMed ID: 36630857 [TBL] [Abstract][Full Text] [Related]
113. Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors. Ji CC; Xu MW; Bao SJ; Cai CJ; Lu ZJ; Chai H; Yang F; Wei H J Colloid Interface Sci; 2013 Oct; 407():416-24. PubMed ID: 23880520 [TBL] [Abstract][Full Text] [Related]
114. Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. Hao J; Yang W; Zhang Z; Lu B; Ke X; Zhang B; Tang J J Colloid Interface Sci; 2014 Jul; 426():131-6. PubMed ID: 24863775 [TBL] [Abstract][Full Text] [Related]
115. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification. Lee B; Lee S; Lee M; Jeong DH; Baek Y; Yoon J; Kim YH Nanoscale; 2015 Apr; 7(15):6782-9. PubMed ID: 25807182 [TBL] [Abstract][Full Text] [Related]
116. Superelastic Pseudocapacitors from Freestanding MnO Zhao Y; Li MP; Liu S; Islam MF ACS Appl Mater Interfaces; 2017 Jul; 9(28):23810-23819. PubMed ID: 28636819 [TBL] [Abstract][Full Text] [Related]
117. Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application. Ouyang A; Cao A; Hu S; Li Y; Xu R; Wei J; Zhu H; Wu D ACS Appl Mater Interfaces; 2016 May; 8(17):11179-87. PubMed ID: 27058391 [TBL] [Abstract][Full Text] [Related]
118. Boosting Supercapacitor Performance of Graphene by Coupling with Nitrogen-Doped Hollow Carbon Frameworks. Wang M; Yang J; Jia K; Liu S; Hu C; Qiu J Chemistry; 2020 Mar; 26(13):2897-2903. PubMed ID: 31774194 [TBL] [Abstract][Full Text] [Related]
119. In-Situ Fabrication of MOF-Derived Co-Co Layered Double Hydroxide Hollow Nanocages/Graphene Composite: A Novel Electrode Material with Superior Electrochemical Performance. Bai X; Liu J; Liu Q; Chen R; Jing X; Li B; Wang J Chemistry; 2017 Oct; 23(59):14839-14847. PubMed ID: 28809067 [TBL] [Abstract][Full Text] [Related]
120. Current insights and future prospects of graphene aerogel-enhanced supercapacitors: A systematic review. Abdou Ahmed Abdou Elsehsah K; Ahmad Noorden Z; Mat Saman N Heliyon; 2024 Sep; 10(17):e37071. PubMed ID: 39286138 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]