BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34126561)

  • 1. Mechanical properties of ankle joint and gastrocnemius muscle in spastic children with unilateral cerebral palsy measured with shear wave elastography.
    Boulard C; Gautheron V; Lapole T
    J Biomech; 2021 Jul; 124():110502. PubMed ID: 34126561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute passive stretching has no effect on gastrocnemius medialis stiffness in children with unilateral cerebral palsy.
    Boulard C; Gautheron V; Lapole T
    Eur J Appl Physiol; 2023 Mar; 123(3):467-477. PubMed ID: 36318307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability outcomes and inter-limb differences in ankle joint stiffness in children with unilateral cerebral palsy depend on the method of analysis.
    Boulard C; Gautheron V; Lapole T
    J Electromyogr Kinesiol; 2019 Dec; 49():102353. PubMed ID: 31473451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy.
    Lee SS; Gaebler-Spira D; Zhang LQ; Rymer WZ; Steele KM
    Clin Biomech (Bristol, Avon); 2016 Jan; 31():20-8. PubMed ID: 26490641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography.
    Brandenburg JE; Eby SF; Song P; Kingsley-Berg S; Bamlet W; Sieck GC; An KN
    Dev Med Child Neurol; 2016 Dec; 58(12):1288-1294. PubMed ID: 27374483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of shear wave elastography to analyze the muscle structure in children with spastic cerebral palsy.
    Analan PD; Aslan H
    J Pediatr Rehabil Med; 2023; 16(1):157-161. PubMed ID: 36314221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles.
    Hug F; Lacourpaille L; Maïsetti O; Nordez A
    J Biomech; 2013 Sep; 46(14):2534-8. PubMed ID: 23953502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive material properties of stroke-impaired plantarflexor and dorsiflexor muscles.
    Jakubowski KL; Terman A; Santana RVC; Lee SSM
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():48-55. PubMed ID: 28866442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive stiffness of the gastrocnemius muscle in athletes with spastic hemiplegic cerebral palsy.
    Hussain AW; Onambele GL; Williams AG; Morse CI
    Eur J Appl Physiol; 2013 Sep; 113(9):2291-9. PubMed ID: 23689294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The association of muscle and tendon elasticity with passive joint stiffness: In vivo measurements using ultrasound shear wave elastography.
    Chino K; Takahashi H
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1230-5. PubMed ID: 26296832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Plantar Flexor Muscles Stiffness During Passive and Active Force Generation Using Shear Wave Elastography in Individuals With Chronic Stroke.
    Belghith K; Zidi M; Fedele JM; Bou-Serhal R; Maktouf W
    Ultrasound Med Biol; 2024 May; 50(5):735-742. PubMed ID: 38378402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and passive mechanical properties of the medial gastrocnemius muscle in ambulatory individuals with chronic stroke.
    Huang M; Miller T; Fu SN; Ying MTC; Pang MYC
    Clin Biomech (Bristol, Avon); 2022 Jun; 96():105672. PubMed ID: 35617816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of passive muscle stiffness by shear wave elastography in healthy individuals of different ages.
    Liu X; Yu HK; Sheng SY; Liang SM; Lu H; Chen RY; Pan M; Wen ZB
    Eur Radiol; 2021 May; 31(5):3187-3194. PubMed ID: 33052467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Evaluation of Gastrocnemius Medialis Stiffness During Passive Stretching Using Shear Wave Elastography in Patients with Parkinson's Disease: A Prospective Preliminary Study.
    Yin L; Du L; Li Y; Xiao Y; Zhang S; Ma H; He W
    Korean J Radiol; 2021 Nov; 22(11):1841-1849. PubMed ID: 34431245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Estimation of Passive Elastic Properties of Individual Skeletal Muscle in Vivo Using Normalized Elastic Modulus-Length Curve.
    Xiao Y; Wang C; Sun Y; Zhang X; Cui L; Yu J; Zheng H
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3371-3379. PubMed ID: 32286954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for intermuscle difference in slack angle in human triceps surae.
    Hirata K; Kanehisa H; Miyamoto-Mikami E; Miyamoto N
    J Biomech; 2015 Apr; 48(6):1210-3. PubMed ID: 25682539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical muscle and tendon properties of the plantar flexors are altered even in highly functional children with spastic cerebral palsy.
    Kruse A; Schranz C; Svehlik M; Tilp M
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():139-144. PubMed ID: 29100187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of Shear Wave Elastography and Ultrasound Measurement in Children with Unilateral Spastic Cerebral Palsy.
    Boulard C; Mathevon L; Arnaudeau LF; Gautheron V; Calmels P
    Ultrasound Med Biol; 2021 May; 47(5):1204-1211. PubMed ID: 33579563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association between medial gastrocnemius muscle-tendon unit architecture and ankle dorsiflexion range of motion with and without consideration of slack angle.
    Hirata K; Kanehisa H; Miyamoto N
    PLoS One; 2021; 16(3):e0248125. PubMed ID: 33667276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy.
    Zhao H; Wu YN; Hwang M; Ren Y; Gao F; Gaebler-Spira D; Zhang LQ
    J Appl Physiol (1985); 2011 Aug; 111(2):435-42. PubMed ID: 21596920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.