These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 34126592)
1. OsLSD1.1 is involved in the photosystem II reaction and affects nitrogen allocation in rice. Xiang J; Qian K; Zhang Y; Chew J; Liang J; Zhu J; Zhang Y; Fan X Plant Physiol Biochem; 2021 Sep; 166():246-257. PubMed ID: 34126592 [TBL] [Abstract][Full Text] [Related]
2. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy. Iqbal MF; Liu S; Zhu J; Zhao L; Qi T; Liang J; Luo J; Xiao X; Fan X J Environ Manage; 2021 Feb; 279():111583. PubMed ID: 33187783 [TBL] [Abstract][Full Text] [Related]
3. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. Hou W; Tränkner M; Lu J; Yan J; Huang S; Ren T; Cong R; Li X BMC Plant Biol; 2019 Jul; 19(1):302. PubMed ID: 31291890 [TBL] [Abstract][Full Text] [Related]
4. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Caverzan A; Bonifacio A; Carvalho FE; Andrade CM; Passaia G; Schünemann M; Maraschin Fdos S; Martins MO; Teixeira FK; Rauber R; Margis R; Silveira JA; Margis-Pinheiro M Plant Sci; 2014 Jan; 214():74-87. PubMed ID: 24268165 [TBL] [Abstract][Full Text] [Related]
5. Physiological and Transcriptome Analyses of Early Leaf Senescence for Li Z; Pan X; Guo X; Fan K; Lin W Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836615 [TBL] [Abstract][Full Text] [Related]
6. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L.). Zhong C; Jian SF; Huang J; Jin QY; Cao XC Plant Physiol Biochem; 2019 Feb; 135():41-50. PubMed ID: 30500517 [TBL] [Abstract][Full Text] [Related]
7. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (Gc). Kang Z; Li G; Huang J; Niu X; Zou H; Zang G; Wenwen Y; Wang G Plant Physiol Biochem; 2012 Nov; 60():81-7. PubMed ID: 22922107 [TBL] [Abstract][Full Text] [Related]
8. Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. Theerawitaya C; Supaibulwatana K; Tisarum R; Samphumphuang T; Chungloo D; Singh HP; Cha-Um S Protoplasma; 2023 May; 260(3):691-705. PubMed ID: 36056227 [TBL] [Abstract][Full Text] [Related]
9. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. Porcel R; Redondo-Gómez S; Mateos-Naranjo E; Aroca R; Garcia R; Ruiz-Lozano JM J Plant Physiol; 2015 Aug; 185():75-83. PubMed ID: 26291919 [TBL] [Abstract][Full Text] [Related]
10. [Research advance in the roles of water-nitrogen-oxygen factors in mediating rice growth, photosynthesis and nitrogen utilization in paddy soils.]. Wu LL; Tian C; Zhang L; Huang J; Zhu LF; Zhang JH; Cao XC; Jin QY Ying Yong Sheng Tai Xue Bao; 2021 Apr; 32(4):1498-1508. PubMed ID: 33899419 [TBL] [Abstract][Full Text] [Related]
11. Deficiency of phytochrome B alleviates chilling-induced photoinhibition in rice. Yang JC; Li M; Xie XZ; Han GL; Sui N; Wang BS Am J Bot; 2013 Sep; 100(9):1860-70. PubMed ID: 24018854 [TBL] [Abstract][Full Text] [Related]
12. Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Ding L; Uehlein N; Kaldenhoff R; Guo S; Zhu Y; Kai L Plant Physiol Biochem; 2019 Jun; 139():152-160. PubMed ID: 30889480 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of OsTLP27 in rice improves chloroplast function and photochemical efficiency. Hu F; Kang Z; Qiu S; Wang Y; Qin F; Yue C; Huang J; Wang G Plant Sci; 2012 Oct; 195():125-34. PubMed ID: 22921006 [TBL] [Abstract][Full Text] [Related]
14. [Effects of different baynyardgrass varieties on grain yield formation of rice at different nitrogen application levels.]. Zhang ZC; Gu T; Li YF; Yang X Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3559-3568. PubMed ID: 29696853 [TBL] [Abstract][Full Text] [Related]
15. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Chang H; Huang HE; Cheng CF; Ho MH; Ger MJ Transgenic Res; 2017 Apr; 26(2):279-289. PubMed ID: 28054169 [TBL] [Abstract][Full Text] [Related]
16. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis. Xiaochuang C; Chu Z; Lianfeng Z; Junhua Z; Hussain S; Lianghuan W; Qianyu J Plant Physiol Biochem; 2017 Mar; 112():251-260. PubMed ID: 28107733 [TBL] [Abstract][Full Text] [Related]
17. Molecular characterization and functional analysis of the OsPsbR gene family in rice. Li L; Ye T; Gao X; Chen R; Xu J; Xie C; Zhu J; Deng X; Wang P; Xu Z Mol Genet Genomics; 2017 Apr; 292(2):271-281. PubMed ID: 27832344 [TBL] [Abstract][Full Text] [Related]
18. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. Fan X; Feng H; Tan Y; Xu Y; Miao Q; Xu G J Integr Plant Biol; 2016 Jun; 58(6):590-9. PubMed ID: 26220694 [TBL] [Abstract][Full Text] [Related]
19. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Wang L; Pei Z; Tian Y; He C Mol Plant Microbe Interact; 2005 May; 18(5):375-84. PubMed ID: 15915636 [TBL] [Abstract][Full Text] [Related]
20. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Ma J; Lv C; Xu M; Chen G; Lv C; Gao Z Environ Sci Pollut Res Int; 2016 Jan; 23(2):1768-78. PubMed ID: 26396015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]