These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 34126702)
1. Machine Learning Model for Predicting Postoperative Survival of Patients with Colorectal Cancer. Osman MH; Mohamed RH; Sarhan HM; Park EJ; Baik SH; Lee KY; Kang J Cancer Res Treat; 2022 Apr; 54(2):517-524. PubMed ID: 34126702 [TBL] [Abstract][Full Text] [Related]
2. Predicting Survival of Patients With Rectal Neuroendocrine Tumors Using Machine Learning: A SEER-Based Population Study. Cheng X; Li J; Xu T; Li K; Li J Front Surg; 2021; 8():745220. PubMed ID: 34805260 [No Abstract] [Full Text] [Related]
3. LASSO-Based Machine Learning Algorithm for Prediction of Lymph Node Metastasis in T1 Colorectal Cancer. Kang J; Choi YJ; Kim IK; Lee HS; Kim H; Baik SH; Kim NK; Lee KY Cancer Res Treat; 2021 Jul; 53(3):773-783. PubMed ID: 33421980 [TBL] [Abstract][Full Text] [Related]
4. Machine learning for predicting liver and/or lung metastasis in colorectal cancer: A retrospective study based on the SEER database. Guo Z; Zhang Z; Liu L; Zhao Y; Liu Z; Zhang C; Qi H; Feng J; Yang C; Tai W; Banchini F; Inchingolo R Eur J Surg Oncol; 2024 Jul; 50(7):108362. PubMed ID: 38704899 [TBL] [Abstract][Full Text] [Related]
5. Artificial intelligence based personalized predictive survival among colorectal cancer patients. Susič D; Syed-Abdul S; Dovgan E; Jonnagaddala J; Gradišek A Comput Methods Programs Biomed; 2023 Apr; 231():107435. PubMed ID: 36842345 [TBL] [Abstract][Full Text] [Related]
6. A Machine Learning Algorithm for Predicting the Risk of Developing to M1b Stage of Patients With Germ Cell Testicular Cancer. Ding L; Wang K; Zhang C; Zhang Y; Wang K; Li W; Wang J Front Public Health; 2022; 10():916513. PubMed ID: 35844840 [TBL] [Abstract][Full Text] [Related]
7. Does the SORG Algorithm Predict 5-year Survival in Patients with Chondrosarcoma? An External Validation. Bongers MER; Thio QCBS; Karhade AV; Stor ML; Raskin KA; Lozano Calderon SA; DeLaney TF; Ferrone ML; Schwab JH Clin Orthop Relat Res; 2019 Oct; 477(10):2296-2303. PubMed ID: 31107338 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models. Heo JH; Kim T; Shin J; Suh GJ; Kim J; Jung YS; Park SM; Kim S; J Korean Med Sci; 2021 Jul; 36(28):e187. PubMed ID: 34282605 [TBL] [Abstract][Full Text] [Related]
9. Using Machine Learning Approaches to Predict Short-Term Risk of Cardiotoxicity Among Patients with Colorectal Cancer After Starting Fluoropyrimidine-Based Chemotherapy. Li C; Chen L; Chou C; Ngorsuraches S; Qian J Cardiovasc Toxicol; 2022 Feb; 22(2):130-140. PubMed ID: 34792740 [TBL] [Abstract][Full Text] [Related]
10. Construction and validation of machine learning models for predicting distant metastases in newly diagnosed colorectal cancer patients: A large-scale and real-world cohort study. Wei R; Yu G; Wang X; Jiang Z; Guan X Cancer Med; 2024 Mar; 13(5):e6971. PubMed ID: 38491804 [TBL] [Abstract][Full Text] [Related]
11. Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer. Gong X; Zheng B; Xu G; Chen H; Chen C J Thorac Dis; 2021 Nov; 13(11):6240-6251. PubMed ID: 34992804 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of a deep learning model for predicting postoperative survival of patients with gastric cancer. Wu M; Yang X; Liu Y; Han F; Li X; Wang J; Guo D; Tang X; Lin L; Liu C BMC Public Health; 2024 Mar; 24(1):723. PubMed ID: 38448849 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a prognostic nomogram for colorectal cancer after surgery. Li BW; Ma XY; Lai S; Sun X; Sun MJ; Chang B World J Clin Cases; 2021 Jul; 9(21):5860-5872. PubMed ID: 34368305 [TBL] [Abstract][Full Text] [Related]
14. Nomograms to predict survival after colorectal cancer resection without preoperative therapy. Zhang ZY; Luo QF; Yin XW; Dai ZL; Basnet S; Ge HY BMC Cancer; 2016 Aug; 16(1):658. PubMed ID: 27553083 [TBL] [Abstract][Full Text] [Related]
15. Preoperative prediction of lymph node status in patients with colorectal cancer. Developing a predictive model using machine learning. Hartwig M; Bräuner KB; Vogelsang R; Gögenur I Int J Colorectal Dis; 2022 Dec; 37(12):2517-2524. PubMed ID: 36435940 [TBL] [Abstract][Full Text] [Related]
16. Predicting Overall Survival in Patients with Nonmetastatic Gastric Signet Ring Cell Carcinoma: A Machine Learning Approach. Li X; Chen Z; Lin J; Wang S; Song C Comput Math Methods Med; 2022; 2022():4862376. PubMed ID: 36148015 [TBL] [Abstract][Full Text] [Related]
17. A modified TNM staging system for non-metastatic colorectal cancer based on nomogram analysis of SEER database. Kong X; Li J; Cai Y; Tian Y; Chi S; Tong D; Hu Y; Yang Q; Li J; Poston G; Yuan Y; Ding K BMC Cancer; 2018 Jan; 18(1):50. PubMed ID: 29310604 [TBL] [Abstract][Full Text] [Related]
18. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999 [TBL] [Abstract][Full Text] [Related]
19. Predicting mortality and recurrence in colorectal cancer: Comparative assessment of predictive models. Alinia S; Asghari-Jafarabadi M; Mahmoudi L; Roshanaei G; Safari M Heliyon; 2024 Mar; 10(6):e27854. PubMed ID: 38515707 [TBL] [Abstract][Full Text] [Related]
20. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]