These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34127492)
1. Ascertaining Framingham heart failure phenotype from inpatient electronic health record data using natural language processing: a multicentre Atherosclerosis Risk in Communities (ARIC) validation study. Moore CR; Jain S; Haas S; Yadav H; Whitsel E; Rosamand W; Heiss G; Kucharska-Newton AM BMJ Open; 2021 Jun; 11(6):e047356. PubMed ID: 34127492 [TBL] [Abstract][Full Text] [Related]
2. Natural Language Processing Combined with ICD-9-CM Codes as a Novel Method to Study the Epidemiology of Allergic Drug Reactions. Banerji A; Lai KH; Li Y; Saff RR; Camargo CA; Blumenthal KG; Zhou L J Allergy Clin Immunol Pract; 2020 Mar; 8(3):1032-1038.e1. PubMed ID: 31857264 [TBL] [Abstract][Full Text] [Related]
3. Natural Language Processing for Asthma Ascertainment in Different Practice Settings. Wi CI; Sohn S; Ali M; Krusemark E; Ryu E; Liu H; Juhn YJ J Allergy Clin Immunol Pract; 2018; 6(1):126-131. PubMed ID: 28634104 [TBL] [Abstract][Full Text] [Related]
4. Enhancing ICD-Code-Based Case Definition for Heart Failure Using Electronic Medical Record Data. Xu Y; Lee S; Martin E; D'souza AG; Doktorchik CTA; Jiang J; Lee S; Eastwood CA; Fine N; Hemmelgarn B; Todd K; Quan H J Card Fail; 2020 Jul; 26(7):610-617. PubMed ID: 32304875 [TBL] [Abstract][Full Text] [Related]
5. Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records. Byrd RJ; Steinhubl SR; Sun J; Ebadollahi S; Stewart WF Int J Med Inform; 2014 Dec; 83(12):983-92. PubMed ID: 23317809 [TBL] [Abstract][Full Text] [Related]
6. Artificial intelligence approaches for phenotyping heart failure in U.S. Veterans Health Administration electronic health record. Shao Y; Zhang S; Raman VK; Patel SS; Cheng Y; Parulkar A; Lam PH; Moore H; Sheriff HM; Fonarow GC; Heidenreich PA; Wu WC; Ahmed A; Zeng-Treitler Q ESC Heart Fail; 2024 Jun; ():. PubMed ID: 38873749 [TBL] [Abstract][Full Text] [Related]
7. Using natural language processing to identify opioid use disorder in electronic health record data. Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420 [TBL] [Abstract][Full Text] [Related]
8. Classification of heart failure in the atherosclerosis risk in communities (ARIC) study: a comparison of diagnostic criteria. Rosamond WD; Chang PP; Baggett C; Johnson A; Bertoni AG; Shahar E; Deswal A; Heiss G; Chambless LE Circ Heart Fail; 2012 Mar; 5(2):152-9. PubMed ID: 22271752 [TBL] [Abstract][Full Text] [Related]
9. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records. Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951 [TBL] [Abstract][Full Text] [Related]
10. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. Afzal N; Sohn S; Abram S; Scott CG; Chaudhry R; Liu H; Kullo IJ; Arruda-Olson AM J Vasc Surg; 2017 Jun; 65(6):1753-1761. PubMed ID: 28189359 [TBL] [Abstract][Full Text] [Related]
11. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Le DV; Montgomery J; Kirkby KC; Scanlan J J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855 [TBL] [Abstract][Full Text] [Related]
12. The use of natural language processing to identify vaccine-related anaphylaxis at five health care systems in the Vaccine Safety Datalink. Yu W; Zheng C; Xie F; Chen W; Mercado C; Sy LS; Qian L; Glenn S; Tseng HF; Lee G; Duffy J; McNeil MM; Daley MF; Crane B; McLean HQ; Jackson LA; Jacobsen SJ Pharmacoepidemiol Drug Saf; 2020 Feb; 29(2):182-188. PubMed ID: 31797475 [TBL] [Abstract][Full Text] [Related]
13. Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) Study. Agarwal SK; Chambless LE; Ballantyne CM; Astor B; Bertoni AG; Chang PP; Folsom AR; He M; Hoogeveen RC; Ni H; Quibrera PM; Rosamond WD; Russell SD; Shahar E; Heiss G Circ Heart Fail; 2012 Jul; 5(4):422-9. PubMed ID: 22589298 [TBL] [Abstract][Full Text] [Related]
14. Electronic medical records for clinical research: application to the identification of heart failure. Pakhomov S; Weston SA; Jacobsen SJ; Chute CG; Meverden R; Roger VL Am J Manag Care; 2007 Jun; 13(6 Part 1):281-8. PubMed ID: 17567225 [TBL] [Abstract][Full Text] [Related]
15. Identification of Heart Failure Events in Medicare Claims: The Atherosclerosis Risk in Communities (ARIC) Study. Kucharska-Newton AM; Heiss G; Ni H; Stearns SC; Puccinelli-Ortega N; Wruck LM; Chambless L J Card Fail; 2016 Jan; 22(1):48-55. PubMed ID: 26211720 [TBL] [Abstract][Full Text] [Related]
16. Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing. Pan J; Zhang Z; Peters SR; Vatanpour S; Walker RL; Lee S; Martin EA; Quan H Brain Inform; 2023 Sep; 10(1):22. PubMed ID: 37658963 [TBL] [Abstract][Full Text] [Related]
17. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
18. Validation of an algorithm to identify heart failure hospitalisations in patients with diabetes within the veterans health administration. Presley CA; Min JY; Chipman J; Greevy RA; Grijalva CG; Griffin MR; Roumie CL BMJ Open; 2018 Mar; 8(3):e020455. PubMed ID: 29581206 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome. Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411 [TBL] [Abstract][Full Text] [Related]
20. Using natural language processing to identify problem usage of prescription opioids. Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]