BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34127714)

  • 1. A genome-wide portrait of pervasive drug contaminants.
    Ogbede JU; Giaever G; Nislow C
    Sci Rep; 2021 Jun; 11(1):12487. PubMed ID: 34127714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems pharmacogenomics in yeast.
    Cahan P; Marsh S; McLeod HL
    Pharmacogenomics; 2006 Mar; 7(2):255-9. PubMed ID: 16515406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.
    Svensson JP; Quirós Pesudo L; McRee SK; Adeleye Y; Carmichael P; Samson LD
    PLoS One; 2013; 8(9):e73736. PubMed ID: 24040048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae.
    Westmoreland TJ; Wickramasekara SM; Guo AY; Selim AL; Winsor TS; Greenleaf AL; Blackwell KL; Olson JA; Marks JR; Bennett CB
    PLoS One; 2009 Jun; 4(6):e5830. PubMed ID: 19503795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.
    Arita A; Zhou X; Ellen TP; Liu X; Bai J; Rooney JP; Kurtz A; Klein CB; Dai W; Begley TJ; Costa M
    BMC Genomics; 2009 Nov; 10():524. PubMed ID: 19917080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further phenotypic characterization of pso mutants of Saccharomyces cerevisiae with respect to DNA repair and response to oxidative stress.
    Pungartnik C; Picada J; Brendel M; Henriques JA
    Genet Mol Res; 2002 Mar; 1(1):79-89. PubMed ID: 14963816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action.
    Kapitzky L; Beltrao P; Berens TJ; Gassner N; Zhou C; Wüster A; Wu J; Babu MM; Elledge SJ; Toczyski D; Lokey RS; Krogan NJ
    Mol Syst Biol; 2010 Dec; 6():451. PubMed ID: 21179023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents.
    Lee W; St Onge RP; Proctor M; Flaherty P; Jordan MI; Arkin AP; Davis RW; Nislow C; Giaever G
    PLoS Genet; 2005 Aug; 1(2):e24. PubMed ID: 16121259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the protective effect of ascorbic acid on nitrite- and nitrosamine-induced cytotoxicity and genotoxicity in human hepatoma line.
    Erkekoglu P; Baydar T
    Toxicol Mech Methods; 2010 Feb; 20(2):45-52. PubMed ID: 20100056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast.
    Ericson E; Gebbia M; Heisler LE; Wildenhain J; Tyers M; Giaever G; Nislow C
    PLoS Genet; 2008 Aug; 4(8):e1000151. PubMed ID: 18688276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GFP-fused yeast cells as whole-cell biosensors for genotoxicity evaluation of nitrosamines.
    He Y; Ding H; Xia X; Qi W; Wang H; Liu W; Zheng F
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5607-5616. PubMed ID: 34228183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of differential DNA-repair host mediated assays to investigate the biotransformation of xenobiotics in Drosophila melanogaster. I. Genotoxic effects of nitrosamines.
    Knasmuller S; Szakmary A; Kehrer M
    Chem Biol Interact; 1990; 75(1):17-29. PubMed ID: 2114223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.
    Jo WJ; Loguinov A; Chang M; Wintz H; Nislow C; Arkin AP; Giaever G; Vulpe CD
    Toxicol Sci; 2008 Jan; 101(1):140-51. PubMed ID: 17785683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular insight into arsenic toxicity via the genome-wide deletion mutant screening of Saccharomyces cerevisiae.
    Johnson AJ; Veljanoski F; O'Doherty PJ; Zaman MS; Petersingham G; Bailey TD; Münch G; Kersaitis C; Wu MJ
    Metallomics; 2016 Feb; 8(2):228-35. PubMed ID: 26688044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of genotoxic chemicals using chemogenomic profiling based on gene-knockout library in Saccharomyces cerevisiae.
    Guan M; Zhu Z; Jiang Y; Tian M; Yan L; Xu X; Li S; Chen D; Zhang X
    Toxicol In Vitro; 2022 Mar; 79():105278. PubMed ID: 34843885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of alkylation damage in Saccharomyces cerevisiae.
    Goth-Goldstein R; Johnson PL
    Mol Gen Genet; 1990 May; 221(3):353-7. PubMed ID: 2199817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimated Cancer Risks Associated with Nitrosamine Contamination in Commonly Used Medications.
    Li K; Ricker K; Tsai FC; Hsieh CJ; Osborne G; Sun M; Marder ME; Elmore S; Schmitz R; Sandy MS
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks.
    de Graaf B; Clore A; McCullough AK
    DNA Repair (Amst); 2009 Oct; 8(10):1207-14. PubMed ID: 19625222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.
    Auesukaree C; Damnernsawad A; Kruatrachue M; Pokethitiyook P; Boonchird C; Kaneko Y; Harashima S
    J Appl Genet; 2009; 50(3):301-10. PubMed ID: 19638689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemogenomic approaches to elucidation of gene function and genetic pathways.
    Pierce SE; Davis RW; Nislow C; Giaever G
    Methods Mol Biol; 2009; 548():115-43. PubMed ID: 19521822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.