These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 34127820)
1. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Kim J; Lee KT; Lee JS; Shin J; Cui B; Yang K; Choi YS; Choi N; Lee SH; Lee JH; Bahn YS; Cho SW Nat Biomed Eng; 2021 Aug; 5(8):830-846. PubMed ID: 34127820 [TBL] [Abstract][Full Text] [Related]
2. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Lyu Z; Park J; Kim KM; Jin HJ; Wu H; Rajadas J; Kim DH; Steinberg GK; Lee W Nat Biomed Eng; 2021 Aug; 5(8):847-863. PubMed ID: 34385693 [TBL] [Abstract][Full Text] [Related]
3. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Wevers NR; Kasi DG; Gray T; Wilschut KJ; Smith B; van Vught R; Shimizu F; Sano Y; Kanda T; Marsh G; Trietsch SJ; Vulto P; Lanz HL; Obermeier B Fluids Barriers CNS; 2018 Aug; 15(1):23. PubMed ID: 30165870 [TBL] [Abstract][Full Text] [Related]
4. The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier. Na Pombejra S; Salemi M; Phinney BS; Gelli A Front Cell Infect Microbiol; 2017; 7():296. PubMed ID: 28713781 [TBL] [Abstract][Full Text] [Related]
5. A pump-free tricellular blood-brain barrier on-a-chip model to understand barrier property and evaluate drug response. Yu F; Kumar NDS; Foo LC; Ng SH; Hunziker W; Choudhury D Biotechnol Bioeng; 2020 Apr; 117(4):1127-1136. PubMed ID: 31885078 [TBL] [Abstract][Full Text] [Related]
6. Region-specific permeability of the blood-brain barrier upon pericyte loss. Villaseñor R; Kuennecke B; Ozmen L; Ammann M; Kugler C; Grüninger F; Loetscher H; Freskgård PO; Collin L J Cereb Blood Flow Metab; 2017 Dec; 37(12):3683-3694. PubMed ID: 28273726 [TBL] [Abstract][Full Text] [Related]
7. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Park TE; Mustafaoglu N; Herland A; Hasselkus R; Mannix R; FitzGerald EA; Prantil-Baun R; Watters A; Henry O; Benz M; Sanchez H; McCrea HJ; Goumnerova LC; Song HW; Palecek SP; Shusta E; Ingber DE Nat Commun; 2019 Jun; 10(1):2621. PubMed ID: 31197168 [TBL] [Abstract][Full Text] [Related]
8. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869 [TBL] [Abstract][Full Text] [Related]
9. Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions. Uwamori H; Ono Y; Yamashita T; Arai K; Sudo R Microvasc Res; 2019 Mar; 122():60-70. PubMed ID: 30472038 [TBL] [Abstract][Full Text] [Related]
11. A Human Neurovascular Unit On-a-Chip. Lee SWL; Rogosic R; Venturi C; Raimondi MT; Pavesi A; Adriani G Methods Mol Biol; 2022; 2373():107-119. PubMed ID: 34520009 [TBL] [Abstract][Full Text] [Related]
12. Pericytes regulate the blood-brain barrier. Armulik A; Genové G; Mäe M; Nisancioglu MH; Wallgard E; Niaudet C; He L; Norlin J; Lindblom P; Strittmatter K; Johansson BR; Betsholtz C Nature; 2010 Nov; 468(7323):557-61. PubMed ID: 20944627 [TBL] [Abstract][Full Text] [Related]
13. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Adriani G; Ma D; Pavesi A; Kamm RD; Goh EL Lab Chip; 2017 Jan; 17(3):448-459. PubMed ID: 28001148 [TBL] [Abstract][Full Text] [Related]
14. 3D Self-Organized Human Blood-Brain Barrier in a Microfluidic Chip. Campisi M; Lim SH; Chiono V; Kamm RD Methods Mol Biol; 2021; 2258():205-219. PubMed ID: 33340363 [TBL] [Abstract][Full Text] [Related]
16. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M; Shin Y; Osaki T; Hajal C; Chiono V; Kamm RD Biomaterials; 2018 Oct; 180():117-129. PubMed ID: 30032046 [TBL] [Abstract][Full Text] [Related]
17. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells. Appelt-Menzel A; Cubukova A; Günther K; Edenhofer F; Piontek J; Krause G; Stüber T; Walles H; Neuhaus W; Metzger M Stem Cell Reports; 2017 Apr; 8(4):894-906. PubMed ID: 28344002 [TBL] [Abstract][Full Text] [Related]
18. Self-assembling 3D vessel-on-chip model with hiPSC-derived astrocytes. Nahon DM; Vila Cuenca M; van den Hil FE; Hu M; de Korte T; Frimat JP; van den Maagdenberg AMJM; Mummery CL; Orlova VV Stem Cell Reports; 2024 Jul; 19(7):946-956. PubMed ID: 38876110 [TBL] [Abstract][Full Text] [Related]
19. Modeling of Blood-Brain Barrier (BBB) Dysfunction and Immune Cell Migration Using Human BBB-on-a-Chip for Drug Discovery Research. Ohbuchi M; Shibuta M; Tetsuka K; Sasaki-Iwaoka H; Oishi M; Shimizu F; Nagasaka Y Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928202 [TBL] [Abstract][Full Text] [Related]