BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34128008)

  • 1. Core-shell PdAu nanocluster catalysts to suppress sulfur poisoning.
    Gao S; Wang L; Li H; Liu Z; Shi G; Peng J; Wang B; Wang W; Cho K
    Phys Chem Chem Phys; 2021 Jul; 23(28):15010-15019. PubMed ID: 34128008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis.
    Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S
    ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
    Luo L; Zhang L; Henkelman G; Crooks RM
    J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and catalytic activity of exsolved Ni on Pd core-shell nanoparticles.
    Kumar P; Monder DS
    Phys Chem Chem Phys; 2022 Dec; 24(48):29801-29816. PubMed ID: 36468269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant Enhanced SO
    Yang D; Dong F; Han W; Zhang J; Tang Z
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42541-42556. PubMed ID: 37665651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells.
    Zhang N; Chen FY; Wu XQ
    Sci Rep; 2015 Jul; 5():11984. PubMed ID: 26148904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations.
    Zhang J; Jin H; Sullivan MB; Lim FC; Wu P
    Phys Chem Chem Phys; 2009 Mar; 11(9):1441-6. PubMed ID: 19224045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Characterization of Catalytically Active Au Core─Pd Shell Nanoparticles Supported on Alumina.
    Feng Y; Schaefer A; Hellman A; Di M; Härelind H; Bauer M; Carlsson PA
    Langmuir; 2022 Oct; 38(42):12859-12870. PubMed ID: 36221959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Selectivity to H2 Formation in Decomposition of HCOOH on the Ag19@Pd60 Core-Shell Nanocluster from First-Principles.
    Cho J; Lee S; Han J; Yoon SP; Nam SW; Choi SH; Hong SA; Lee KY; Ham HC
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8233-7. PubMed ID: 26726494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness.
    Zhang Y; Wang B; Fan M; Ling L; Zhang R
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10679-10695. PubMed ID: 36795766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles.
    Li L; Li X; Duan Z; Meyer RJ; Carr R; Raman S; Koziol L; Henkelman G
    Nanoscale; 2019 May; 11(21):10524-10535. PubMed ID: 31116210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts.
    Shin K; Zhang L; An H; Ha H; Yoo M; Lee HM; Henkelman G; Kim HY
    Nanoscale; 2017 Apr; 9(16):5244-5253. PubMed ID: 28397916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, stability, electronic, magnetic, and catalytic properties of monometallic Pd, Au, and bimetallic Pd-Au core-shell nanoparticles.
    Wang Q; Lu X; Zhen Y; Li WQ; Chen GH; Yang Y
    J Chem Phys; 2018 Dec; 149(24):244307. PubMed ID: 30599716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of changes in the electronic structure of platinum sub-nanoclusters supported on graphene induced by oxygen adsorption.
    Hirase H; Iida K; Hasegawa JY
    Phys Chem Chem Phys; 2024 Jun; ():. PubMed ID: 38869073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-Mediated Shell Dimension Reconstruction of Core@Shell PdAu@Pd Nanocrystals for Robust C1 and C2 Alcohol Electrocatalysis.
    Gao F; Zhang Y; You H; Li Z; Zou B; Du Y
    Small; 2021 Aug; 17(32):e2101428. PubMed ID: 34213824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the surface properties of AuPd nanoparticles for adsorption of O and CO.
    Chepkasov IV; Zamulin IS; Baidyshev VS; Kvashnin AG
    Phys Chem Chem Phys; 2023 Dec; 25(48):33031-33037. PubMed ID: 38037396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient Pd-based core-shell nanowire catalysts for O2 dissociation.
    Zhang Y; Yang Z; Wu M
    Phys Chem Chem Phys; 2014 Oct; 16(38):20532-6. PubMed ID: 25144548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.