These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 34128072)

  • 1. Present and Future Spinal Robotic and Enabling Technologies.
    Khalsa SSS; Mummaneni PV; Chou D; Park P
    Oper Neurosurg (Hagerstown); 2021 Jun; 21(Suppl 1):S48-S56. PubMed ID: 34128072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technological Advances in Spine Surgery: Navigation, Robotics, and Augmented Reality.
    Yamout T; Orosz LD; Good CR; Jazini E; Allen B; Gum JL
    Orthop Clin North Am; 2023 Apr; 54(2):237-246. PubMed ID: 36894295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic-Assisted Spinal Surgery: Current Generation Instrumentation and New Applications.
    Elswick CM; Strong MJ; Joseph JR; Saadeh Y; Oppenlander M; Park P
    Neurosurg Clin N Am; 2020 Jan; 31(1):103-110. PubMed ID: 31739920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic navigation in spine surgery: Where are we now and where are we going?
    Wang TY; Park C; Dalton T; Rajkumar S; McCray E; Owolo E; Than KD; Abd-El-Barr MM
    J Clin Neurosci; 2021 Dec; 94():298-304. PubMed ID: 34863454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigation and Robotics in Spinal Surgery: Where Are We Now?
    Overley SC; Cho SK; Mehta AI; Arnold PM
    Neurosurgery; 2017 Mar; 80(3S):S86-S99. PubMed ID: 28350944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-guidance, Robotics, and the Future of Spine Surgery.
    Ahern DP; Gibbons D; Schroeder GD; Vaccaro AR; Butler JS
    Clin Spine Surg; 2020 Jun; 33(5):179-184. PubMed ID: 31425306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Spine Robotic-Assisted Navigation System for Pedicle Screw Placement.
    Chen HY; Xiao XY; Chen CW; Chou HK; Sung CY; Lin FH; Chen PQ; Wong TH
    J Vis Exp; 2020 May; (159):. PubMed ID: 32449705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Next-Generation Robotic Technology with 3-Dimensional Computed Tomography Navigation Technology for the Insertion of Posterior Pedicle Screws.
    Khan A; Meyers JE; Yavorek S; O'Connor TE; Siasios I; Mullin JP; Pollina J
    World Neurosurg; 2019 Mar; 123():e474-e481. PubMed ID: 30500593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cement-augmented pedicle screw insertion assisted by spinal robotic systems for widespread spinal metastases.
    Wu C; Lee CY; Huang TJ; Wu MH
    J Robot Surg; 2019 Aug; 13(4):595-598. PubMed ID: 30392149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of robotics in minimally invasive spine surgery.
    Staub BN; Sadrameli SS
    J Spine Surg; 2019 Jun; 5(Suppl 1):S31-S40. PubMed ID: 31380491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technologic Evolution of Navigation and Robotics in Spine Surgery: A Historical Perspective.
    Mao JZ; Agyei JO; Khan A; Hess RM; Jowdy PK; Mullin JP; Pollina J
    World Neurosurg; 2021 Jan; 145():159-167. PubMed ID: 32916361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and control of an image-guided robot for spine surgery in a hybrid OR.
    Balicki M; Kyne S; Toporek G; Holthuizen R; Homan R; Popovic A; Burström G; Persson O; Edström E; Elmi-Terander A; Patriciu A
    Int J Med Robot; 2020 Aug; 16(4):e2108. PubMed ID: 32270913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics in Spine Surgery and Spine Surgery Training.
    Liounakos JI; Chenin L; Theodore N; Wang MY
    Oper Neurosurg (Hagerstown); 2021 Jul; 21(2):35-40. PubMed ID: 34017989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spine Navigation Based on 3-Dimensional Robotic Fluoroscopy for Accurate Percutaneous Pedicle Screw Placement: A Prospective Study of 66 Consecutive Cases.
    Fomekong E; Safi SE; Raftopoulos C
    World Neurosurg; 2017 Dec; 108():76-83. PubMed ID: 28870824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Results of using robotic-assisted navigational system in pedicle screw placement.
    Chen HY; Xiao XY; Chen CW; Chou HK; Sung CY; Lin FH; Chen PQ; Wong TH
    PLoS One; 2019; 14(8):e0220851. PubMed ID: 31425528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device.
    Peh S; Chatterjea A; Pfarr J; Schäfer JP; Weuster M; Klüter T; Seekamp A; Lippross S
    Spine J; 2020 Apr; 20(4):629-637. PubMed ID: 31863933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Robotic Spine Surgery Program: Rationale, Strategy, Challenges, and Monitoring of Outcomes After Implementation.
    Kuris EO; Anderson GM; Osorio C; Basques B; Alsoof D; Daniels AH
    J Bone Joint Surg Am; 2022 Oct; 104(19):e83. PubMed ID: 36197328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Validation of a Spinal Surgical Navigation System Based on Spatial Augmented Reality.
    Xu B; Yang Z; Jiang S; Zhou Z; Jiang B; Yin S
    Spine (Phila Pa 1976); 2020 Dec; 45(23):E1627-E1633. PubMed ID: 32833931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-Guided Navigation and Robotics in Spine Surgery.
    Kochanski RB; Lombardi JM; Laratta JL; Lehman RA; O'Toole JE
    Neurosurgery; 2019 Jun; 84(6):1179-1189. PubMed ID: 30615160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Cortical Bone Trajectories for Pedicle Screw Insertion using Robotic Guidance and Three-Dimensional Computed Tomography Navigation.
    Khan A; Rho K; Mao JZ; O'Connor TE; Agyei JO; Meyers JE; Mullin JP; Pollina J
    World Neurosurg; 2020 Sep; 141():e625-e632. PubMed ID: 32522651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.