These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34128420)

  • 21. Effect of Impeller Geometry on Lift-Off Characteristics and Rotational Attitude in a Monopivot Centrifugal Blood Pump.
    Nishida M; Nakayama K; Sakota D; Kosaka R; Maruyama O; Kawaguchi Y; Kuwana K; Yamane T
    Artif Organs; 2016 Jun; 40(6):E89-E101. PubMed ID: 27097844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Parametric Study of the Axial and Radial Clearances in a Centrifugal Rotary Blood Pump.
    Rezaienia MA; Paul G; Avital E; Rothman M; Korakianitis T
    ASAIO J; 2018; 64(5):643-650. PubMed ID: 29076943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fuzzy-based modeling and speed optimization of a centrifugal blood pump using a modified and constrained Bees algorithm.
    Incebay O; Onder A; Arif Sen M; Yapici R; Kalyoncu M
    Comput Methods Programs Biomed; 2022 Jun; 221():106867. PubMed ID: 35597207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluid dynamics characterization and thrombogenicity assessment of a levitating centrifugal pump with different impeller designs.
    Bozzi S; Vesentini S; Santus M; Ghelli N; Fontanili P; Corbelli M; Fiore GB; Redaelli ACL
    Med Eng Phys; 2020 Sep; 83():26-33. PubMed ID: 32807345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.
    Kosaka R; Yoshida F; Nishida M; Maruyama O; Kawaguchi Y; Yamane T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3295-8. PubMed ID: 26736996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size.
    Kosaka R; Sakota D; Nishida M; Maruyama O; Yamane T
    J Artif Organs; 2021 Jun; 24(2):157-163. PubMed ID: 33428006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural improvement study of streamline design method, conical hub, and auxiliary blades for axial blood pump.
    Yu Z; Tan J; Wang S; Guo B
    Int J Artif Organs; 2021 Apr; 44(4):251-261. PubMed ID: 32957840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid dynamic design for low hemolysis in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Nishida M; Maruyama O; Yamane T; Kuwana K; Kawaguchi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2732-5. PubMed ID: 24110292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational fluid dynamic analyses to establish design process of centrifugal blood pumps.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Masuzawa T; Takiura K; Taenaka Y
    Artif Organs; 1998 May; 22(5):381-5. PubMed ID: 9609345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility.
    Wiegmann L; Boës S; de Zélicourt D; Thamsen B; Schmid Daners M; Meboldt M; Kurtcuoglu V
    Ann Biomed Eng; 2018 Mar; 46(3):417-428. PubMed ID: 29094293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.
    Kosaka R; Nishida M; Maruyama O; Yambe T; Imachi K; Yamane T
    Biomed Mater Eng; 2013; 23(1-2):37-47. PubMed ID: 23442235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump.
    Lv S; He ZP; Liu GM; Hu SS
    Comput Methods Biomech Biomed Engin; 2023 Sep; ():1-12. PubMed ID: 37724774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump.
    Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P
    Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
    Zhang J; Koert A; Gellman B; Gempp TM; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    ASAIO J; 2007; 53(1):23-31. PubMed ID: 17237645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.
    Leme J; da Silva C; Fonseca J; da Silva BU; Uebelhart B; Biscegli JF; Andrade A
    Artif Organs; 2013 Nov; 37(11):942-5. PubMed ID: 24219168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.