These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34128984)

  • 1. HoxD transcription factors define monosynaptic sensory-motor specificity in the developing spinal cord.
    Imai F; Adam M; Potter SS; Yoshida Y
    Development; 2021 Jun; 148(12):. PubMed ID: 34128984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synapse Formation in Monosynaptic Sensory-Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42.
    Imai F; Ladle DR; Leslie JR; Duan X; Rizvi TA; Ciraolo GM; Zheng Y; Yoshida Y
    J Neurosci; 2016 May; 36(21):5724-35. PubMed ID: 27225763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement for Dicer in Maintenance of Monosynaptic Sensory-Motor Circuits in the Spinal Cord.
    Imai F; Chen X; Weirauch MT; Yoshida Y
    Cell Rep; 2016 Nov; 17(9):2163-2172. PubMed ID: 27880894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the immunoglobulin superfamily cell adhesion molecules in the developing spinal cord and dorsal root ganglion.
    Gu Z; Imai F; Kim IJ; Fujita H; Katayama Ki; Mori K; Yoshihara Y; Yoshida Y
    PLoS One; 2015; 10(3):e0121550. PubMed ID: 25826454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord.
    Imai F; Yoshida Y
    Dev Dyn; 2018 Apr; 247(4):581-587. PubMed ID: 29226492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations.
    Vaughan SK; Kemp Z; Hatzipetros T; Vieira F; Valdez G
    J Comp Neurol; 2015 Dec; 523(17):2477-94. PubMed ID: 26136049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling.
    Fukuhara K; Imai F; Ladle DR; Katayama K; Leslie JR; Arber S; Jessell TM; Yoshida Y
    Cell Rep; 2013 Nov; 5(3):748-58. PubMed ID: 24210822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition.
    Pecho-Vrieseling E; Sigrist M; Yoshida Y; Jessell TM; Arber S
    Nature; 2009 Jun; 459(7248):842-6. PubMed ID: 19421194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template.
    Sürmeli G; Akay T; Ippolito GC; Tucker PW; Jessell TM
    Cell; 2011 Oct; 147(3):653-65. PubMed ID: 22036571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons.
    Ladle DR; Hippenmeyer S
    J Neurophysiol; 2023 Jan; ():. PubMed ID: 36695533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons.
    Arber S; Ladle DR; Lin JH; Frank E; Jessell TM
    Cell; 2000 May; 101(5):485-98. PubMed ID: 10850491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression.
    Lin JH; Saito T; Anderson DJ; Lance-Jones C; Jessell TM; Arber S
    Cell; 1998 Oct; 95(3):393-407. PubMed ID: 9814709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positional Strategies for Connection Specificity and Synaptic Organization in Spinal Sensory-Motor Circuits.
    Balaskas N; Abbott LF; Jessell TM; Ng D
    Neuron; 2019 Jun; 102(6):1143-1156.e4. PubMed ID: 31076274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted patterns of Hoxd10 and Hoxd11 set segmental differences in motoneuron subtype complement in the lumbosacral spinal cord.
    Misra M; Shah V; Carpenter E; McCaffery P; Lance-Jones C
    Dev Biol; 2009 Jun; 330(1):54-72. PubMed ID: 19306865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
    Siembab VC; Gomez-Perez L; Rotterman TM; Shneider NA; Alvarez FJ
    J Comp Neurol; 2016 Jun; 524(9):1892-919. PubMed ID: 26660356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular control of spinal accessory motor neuron/axon development in the mouse spinal cord.
    Dillon AK; Fujita SC; Matise MP; Jarjour AA; Kennedy TE; Kollmus H; Arnold HH; Weiner JA; Sanes JR; Kaprielian Z
    J Neurosci; 2005 Nov; 25(44):10119-30. PubMed ID: 16267219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sonic hedgehog on motor neuron positioning in the spinal cord during chicken embryonic development.
    Yang C; Li S; Li X; Li H; Li Y; Zhang C; Lin J
    J Cell Mol Med; 2019 May; 23(5):3549-3562. PubMed ID: 30834718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type III neuregulin 1 regulates pathfinding of sensory axons in the developing spinal cord and periphery.
    Hancock ML; Nowakowski DW; Role LW; Talmage DA; Flanagan JG
    Development; 2011 Nov; 138(22):4887-98. PubMed ID: 22028026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of motor neuron pool sorting by differential expression of type II cadherins.
    Price SR; De Marco Garcia NV; Ranscht B; Jessell TM
    Cell; 2002 Apr; 109(2):205-16. PubMed ID: 12007407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin-plexin mechanism.
    Bron R; Vermeren M; Kokot N; Andrews W; Little GE; Mitchell KJ; Cohen J
    Neural Dev; 2007 Oct; 2():21. PubMed ID: 17971221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.