These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34129162)

  • 41. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau.
    Wang M; Xu B; Wang N; Cao J; Tie X; Wang H; Zhu C; Yang W
    Sci Total Environ; 2016 Dec; 573():1041-1052. PubMed ID: 27607907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Spatial and Temporal Variations in Spectrum-Derived Vegetation Growth Trend in Qinghai-Tibetan Plateau from 1982 to 2014].
    Wang ZW; Wu XD; Yue GY; Zhao L; Wang Q; Nan ZT; Qin Y; Wu TH; Shi JZ; Zou DF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):471-7. PubMed ID: 27209752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism.
    Su T; Wilf P; Xu H; Zhou ZK
    Am J Bot; 2014 Aug; 101(8):1350-61. PubMed ID: 25156983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Grassland net primary productivity and its spatiotemporal distribution in northern Tibet: a study with CASA model].
    Gao QZ; Wan YF; Li YE; Lin ED; Yang K; Jiangcun WZ; Wang BS; Li WF
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2526-32. PubMed ID: 18260459
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atmospheric Iodine (
    Zhao X; Hou X; Zhou W
    Environ Sci Technol; 2019 Aug; 53(15):8706-8714. PubMed ID: 31306582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using machine learning approach to reproduce the measured feature and understand the model-to-measurement discrepancy of atmospheric formaldehyde.
    Yin H; Sun Y; You Y; Notholt J; Palm M; Wang W; Shan C; Liu C
    Sci Total Environ; 2022 Dec; 851(Pt 2):158271. PubMed ID: 36028030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial-temporal evolution of pumped hydro energy storage potential on the Qinghai-Tibet Plateau and its future trend under global warming.
    Qiu L; He L; Lu H; Liang D
    Sci Total Environ; 2023 Jan; 857(Pt 1):159332. PubMed ID: 36228797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temporal and spatial variations in the sub-daily precipitation structure over the Qinghai-Tibet Plateau (QTP).
    Lu HL; Qiu J; Li MJ; Zuo HM; Li JL; Hu BX; Li FF
    Sci Total Environ; 2024 Mar; 915():170153. PubMed ID: 38232821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling the effect of grazing on carbon and water use efficiencies in grasslands on the Qinghai-Tibet Plateau.
    Huang X; Luo G; Ma Z; Yao B; Du Y; Yang Y
    BMC Ecol Evol; 2024 Feb; 24(1):26. PubMed ID: 38408884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Spatial and Temporal Variations in Ozone Pollution and Sensitivity Characteristics in Hainan Island].
    Fu CB; Dan L; Tong JH; Xu WS
    Huan Jing Ke Xue; 2023 Sep; 44(9):4799-4808. PubMed ID: 37699799
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Societal drivers of human echinococcosis in China.
    Wang LY; Qin M; Gavotte L; Wu WP; Cheng X; Lei JX; Yan J; Frutos R
    Parasit Vectors; 2022 Oct; 15(1):385. PubMed ID: 36271415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations.
    Wu J; Duan D; Lu J; Luo Y; Wen X; Guo X; Boman BJ
    Sci Total Environ; 2016 Apr; 550():628-636. PubMed ID: 26849327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coping with extremes: convergences of habitat use, territoriality, and diet in summer but divergences in winter between two sympatric snow finches on the Qinghai-Tibet Plateau.
    Li D; Davis JE; Sun Y; Wang G; Nabi G; Wingfield JC; Lei F
    Integr Zool; 2020 Nov; 15(6):533-543. PubMed ID: 32627943
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The fusion of multiple scale data indicates that the carbon sink function of the Qinghai-Tibet Plateau is substantial.
    Zeng J; Zhou T; Xu Y; Lin Q; Tan E; Zhang Y; Wu X; Zhang J; Liu X
    Carbon Balance Manag; 2023 Sep; 18(1):19. PubMed ID: 37695559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct impacts of vapor transport from the tropical oceans on the regional glacier retreat over the Qinghai-Tibet Plateau.
    Sun C; Xu X; Zhao T; Yao T; Zhang D; Wang N; Ma Y; Ma W; Chen B; Zhang S; Cai W
    Sci Total Environ; 2022 Jun; 823():153545. PubMed ID: 35104526
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatiotemporal variations of surface ozone and its influencing factors across Tibet: A Geodetector-based study.
    Chen Y; Zhou Y; NixiaCiren ; Zhang H; Wang C; GesangDeji ; Wang X
    Sci Total Environ; 2022 Mar; 813():152651. PubMed ID: 34954172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding invasion success of Pseudorasbora parva in the Qinghai-Tibetan Plateau: Insights from life-history and environmental filters.
    Jia Y; Kennard MJ; Liu Y; Sui X; Chen Y; Li K; Wang G; Chen Y
    Sci Total Environ; 2019 Dec; 694():133739. PubMed ID: 31756834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Spatio-temporal Patterns and Potential Sources of Absorbing Aerosols in the Fenwei Plain].
    Liu MX; Li L; Yu RX; Song JY; Zhang GJ; Mu RL; Xu L
    Huan Jing Ke Xue; 2021 Jun; 42(6):2634-2647. PubMed ID: 34032063
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting potential and quality distribution of
    Chen C; Wang B; Li J; Xiao Y; Chen K; Liu N; Zhou G
    Front Plant Sci; 2024; 15():1369641. PubMed ID: 38887466
    [No Abstract]   [Full Text] [Related]  

  • 60. Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau.
    Li Y; Zhang C; Li Z; Yang L; Jin X; Gao X
    Sci Rep; 2022 Nov; 12(1):19746. PubMed ID: 36396695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.