These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34129369)

  • 21. Simultaneous Quantification of Viral Antigen Expression Kinetics Using Data-Independent (DIA) Mass Spectrometry.
    Croft NP; de Verteuil DA; Smith SA; Wong YC; Schittenhelm RB; Tscharke DC; Purcell AW
    Mol Cell Proteomics; 2015 May; 14(5):1361-72. PubMed ID: 25755296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphoproteome and Proteome Sample Preparation from Mouse Tissues for Circadian Analysis.
    Brüning F; Humphrey SJ; Robles MS
    Methods Mol Biol; 2021; 2130():185-193. PubMed ID: 33284445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The landscape of viral proteomics and its potential to impact human health.
    Oxford KL; Wendler JP; McDermott JE; White Iii RA; Powell JD; Jacobs JM; Adkins JN; Waters KM
    Expert Rev Proteomics; 2016 Jun; 13(6):579-91. PubMed ID: 27133506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication.
    Schuchman R; Kilianski A; Piper A; Vancini R; Ribeiro JMC; Sprague TR; Nasar F; Boyd G; Hernandez R; Glaros T
    J Virol; 2018 Jul; 92(14):. PubMed ID: 29743363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted Proteomics for Studying Pathogenic Bacteria.
    Saleh S; Staes A; Deborggraeve S; Gevaert K
    Proteomics; 2019 Aug; 19(16):e1800435. PubMed ID: 31241236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the biology of alpha herpesviruses with MS-based proteomics.
    Engel EA; Song R; Koyuncu OO; Enquist LW
    Proteomics; 2015 Jun; 15(12):1943-56. PubMed ID: 25764121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of histone post-translational modifications during virus infection using mass spectrometry-based proteomics.
    Kulej K; Avgousti DC; Weitzman MD; Garcia BA
    Methods; 2015 Nov; 90():8-20. PubMed ID: 26093074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virus systems biology: Proteomics profiling of dynamic protein networks during infection.
    Klann K; Tascher G; Münch C
    Adv Virus Res; 2021; 109():1-29. PubMed ID: 33934824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.
    Pflieger D; Gonnet F; de la Fuente van Bentem S; Hirt H; de la Fuente A
    Mass Spectrom Rev; 2011; 30(2):268-97. PubMed ID: 21337599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes.
    Roe MR; Griffin TJ
    Proteomics; 2006 Sep; 6(17):4678-87. PubMed ID: 16888762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchmarking stable isotope labeling based quantitative proteomics.
    Altelaar AF; Frese CK; Preisinger C; Hennrich ML; Schram AW; Timmers HT; Heck AJ; Mohammed S
    J Proteomics; 2013 Aug; 88():14-26. PubMed ID: 23085607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics.
    Jean Beltran PM; Cristea IM
    Expert Rev Proteomics; 2014 Dec; 11(6):697-711. PubMed ID: 25327590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Approaches for systematic proteome exploration.
    Falk R; Ramström M; Ståhl S; Hober S
    Biomol Eng; 2007 Jun; 24(2):155-68. PubMed ID: 17376740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ITRAQ-based quantitative proteomics reveals the proteome profiles of MDBK cells infected with bovine viral diarrhea virus.
    Li Y; Guo T; Wang X; Ni W; Hu R; Cui Y; Mi T; Hu S
    Virol J; 2021 Jun; 18(1):119. PubMed ID: 34092256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress and pitfalls of using isobaric mass tags for proteome profiling.
    Dayon L; Affolter M
    Expert Rev Proteomics; 2020 Feb; 17(2):149-161. PubMed ID: 32067523
    [No Abstract]   [Full Text] [Related]  

  • 36. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
    Manes NP; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tandem Mass Tags for Comparative and Discovery Proteomics.
    Pagel O; Kollipara L; Sickmann A
    Methods Mol Biol; 2021; 2228():117-131. PubMed ID: 33950487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Profiling of Protein Abundance and Phosphorylation State in Plant Tissues Using Tandem Mass Tags.
    Song G; Montes C; Walley JW
    Methods Mol Biol; 2020; 2139():147-156. PubMed ID: 32462584
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Nemeth J; Vongrad V; Metzner KJ; Strouvelle VP; Weber R; Pedrioli P; Aebersold R; Günthard HF; Collins BC
    Mol Cell Proteomics; 2017 Apr; 16(4 suppl 1):S108-S123. PubMed ID: 28223351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative iTRAQ LC-MS/MS proteomics reveals the proteome profiles of DF-1 cells after infection with subgroup J Avian leukosis virus.
    Li X; Wang Q; Gao Y; Qi X; Wang Y; Gao H; Gao Y; Wang X
    Biomed Res Int; 2015; 2015():395307. PubMed ID: 25632391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.