These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34129547)

  • 1. Method to obtain the initial value for the inverse design in nanophotonics based on a time-reversal technique.
    Wang Z; Wang BZ; Liu JP; Wang R
    Opt Lett; 2021 Jun; 46(12):2815-2818. PubMed ID: 34129547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological inverse design of fabrication-constrained nanophotonic devices via an adaptive projection method.
    Liang H; Wang Q; Yuan X; Liu H; Xu J; Zhang Y; Liu K; Huang Y; Ren X
    Opt Lett; 2022 Oct; 47(20):5401-5404. PubMed ID: 36240374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse Design of Nanophotonic Devices Using Generative Adversarial Networks with the Sim-NN Model and Self-Attention Mechanism.
    Xu X; Li Y; Du L; Huang W
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological inverse design of nanophotonic devices with energy constraint.
    Zhang G; Xu DX; Grinberg Y; Liboiron-Ladouceur O
    Opt Express; 2021 Apr; 29(8):12681-12695. PubMed ID: 33985020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks.
    Yan R; Wang T; Jiang X; Huang X; Wang L; Yue X; Wang H; Wang Y
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of inverse, strict conformal transformation to design waveguide devices.
    Ma YG; Wang N; Ong CK
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):968-72. PubMed ID: 20448761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topology-optimized metasurfaces: impact of initial geometric layout.
    Yang J; Fan JA
    Opt Lett; 2017 Aug; 42(16):3161-3164. PubMed ID: 28809897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of an arbitrary ratio optical power splitter based on a discrete differential multiobjective evolutionary algorithm.
    Xie Y; Huang T; Ji Q; Yang M; Wang J; Tu X; Cheng Z; Xu G; Wei Q; Wu Y; Ping Shum P
    Appl Opt; 2020 Feb; 59(6):1780-1785. PubMed ID: 32225687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication-constrained nanophotonic inverse design.
    Piggott AY; Petykiewicz J; Su L; Vučković J
    Sci Rep; 2017 May; 7(1):1786. PubMed ID: 28496126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.
    Dong HW; Wang YS; Zhang C
    Ultrasonics; 2017 Apr; 76():109-124. PubMed ID: 28086106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces.
    Khoram E; Qian X; Yuan M; Yu Z
    Opt Express; 2020 Mar; 28(5):7060-7069. PubMed ID: 32225941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
    Li P; Han Y; Wang W; Liu Y; Jin P; Leng J
    Sci Rep; 2017 Mar; 7():44333. PubMed ID: 28276500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse design of nanophotonic structures using complementary convex optimization.
    Lu J; Vucković J
    Opt Express; 2010 Feb; 18(4):3793-804. PubMed ID: 20389390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a photonic crystal polarization beam splitter and waveguide bend.
    Zheng W; Xing M; Ren G; Johnson SG; Zhou W; Chen W; Chen L
    Opt Express; 2009 May; 17(10):8657-68. PubMed ID: 19434199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-adjusting inverse design method for nanophotonic devices.
    Liu H; Wang Q; Xiang Z; Teng G; Zhao Y; Liu Z; Wei K; Dai F; Lv L; Zhao K; Yang C
    Opt Express; 2022 Oct; 30(21):38832-38847. PubMed ID: 36258439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical level set fabrication constraints for inverse design.
    Vercruysse D; Sapra NV; Su L; Trivedi R; Vučković J
    Sci Rep; 2019 Jun; 9(1):8999. PubMed ID: 31227721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoimprint lithography for nanophotonics in silicon.
    Bruinink CM; Burresi M; de Boer MJ; Segerink FB; Jansen HV; Berenschot E; Reinhoudt DN; Huskens J; Kuipers L
    Nano Lett; 2008 Sep; 8(9):2872-7. PubMed ID: 18698727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the global design space of nanophotonic components using machine learning pattern recognition.
    Melati D; Grinberg Y; Kamandar Dezfouli M; Janz S; Cheben P; Schmid JH; Sánchez-Postigo A; Xu DX
    Nat Commun; 2019 Oct; 10(1):4775. PubMed ID: 31636261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse design of nanophotonic devices using dynamic binarization.
    Butz M; Abazi AS; Ross R; Risse B; Schuck C
    Opt Express; 2023 May; 31(10):15747-15756. PubMed ID: 37157668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.