These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34129586)

  • 1. Magnetically driven rotary microfilter fabricated by two-photon polymerization for multimode filtering of particles.
    Wang C; Hu Z; Yang L; Zhang C; Zhang L; Ji S; Xu L; Li J; Hu Y; Wu D; Chu J; Sugioka K
    Opt Lett; 2021 Jun; 46(12):2968-2971. PubMed ID: 34129586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetically driven micro-optical choppers fabricated by two-photon polymerization.
    Lei X; Peng S; Niu Y; Sun S; Zhu Y; Qiu J
    Opt Lett; 2023 Feb; 48(3):835-838. PubMed ID: 36723601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication.
    Xu B; Du WQ; Li JW; Hu YL; Yang L; Zhang CC; Li GQ; Lao ZX; Ni JC; Chu JR; Wu D; Liu SL; Sugioka K
    Sci Rep; 2016 Jan; 6():19989. PubMed ID: 26818119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels.
    Zhang C; Hu Y; Du W; Wu P; Rao S; Cai Z; Lao Z; Xu B; Ni J; Li J; Zhao G; Wu D; Chu J; Sugioka K
    Sci Rep; 2016 Sep; 6():33281. PubMed ID: 27619690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser microstructuring for polymeric lab-on-chips.
    Eaton SM; De Marco C; Martinez-Vazquez R; Ramponi R; Turri S; Cerullo G; Osellame R
    J Biophotonics; 2012 Aug; 5(8-9):687-702. PubMed ID: 22589025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable microfluidic device fabricated by femtosecond structured light for particle and cell manipulation.
    Hu K; Yang L; Jin D; Li J; Ji S; Xin C; Hu Y; Wu D; Zhang L; Chu J
    Lab Chip; 2019 Dec; 19(23):3988-3996. PubMed ID: 31663093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamically deformable microfilter for selective separation of specific substances in microfluidics.
    Kumamoto S; Nakatake K; Fukuyama S; Yasuda K; Kitamura Y; Iwatsuki M; Baba H; Ihara T; Nakanishi Y; Nakashima Y
    Biomicrofluidics; 2020 Nov; 14(6):064113. PubMed ID: 33425088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose-Based Microparticles for Magnetically Controlled Optical Modulation and Sensing.
    Hausmann MK; Hauser A; Siqueira G; Libanori R; Vehusheia SL; Schuerle S; Zimmermann T; Studart AR
    Small; 2020 Jan; 16(1):e1904251. PubMed ID: 31805220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection.
    Crespi A; Gu Y; Ngamsom B; Hoekstra HJ; Dongre C; Pollnau M; Ramponi R; van den Vlekkert HH; Watts P; Cerullo G; Osellame R
    Lab Chip; 2010 May; 10(9):1167-73. PubMed ID: 20390136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision Microfilters as an all in one System for Multiplex Analysis of Circulating Tumor Cells.
    Adams DL; Alpaugh RK; Martin SS; Charpentier M; Chumsri S; Cristofanilli M; Adams DK; Makarova OV; Zhu P; Li S; Tang CM; Stefansson S
    RSC Adv; 2016; 6(8):6405-6414. PubMed ID: 29093811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon-based microfilters for whole blood cell separation.
    Ji HM; Samper V; Chen Y; Heng CK; Lim TM; Yobas L
    Biomed Microdevices; 2008 Apr; 10(2):251-7. PubMed ID: 17914675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically-actuated artificial cilia for microfluidic propulsion.
    Khaderi SN; Craus CB; Hussong J; Schorr N; Belardi J; Westerweel J; Prucker O; Rühe J; den Toonder JM; Onck PR
    Lab Chip; 2011 Jun; 11(12):2002-10. PubMed ID: 21331419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D laser nano-printing on fibre paves the way for super-focusing of multimode laser radiation.
    Sokolovskii GS; Melissinaki V; Fedorova KA; Dudelev VV; Losev SN; Bougrov VE; Sibbett W; Farsari M; Rafailov EU
    Sci Rep; 2018 Oct; 8(1):14618. PubMed ID: 30279432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Continuous Cell Separation and Collection Approach on a Microfilter and Negative Dielectrophoresis Combined Chip.
    Wang Q; Zhang X; Yin D; Deng J; Yang J; Hu N
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33255917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nearly Aberration-Free Multiphoton Polymerization into Thick Photoresist Layers.
    Horváth B; Ormos P; Kelemen L
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing.
    Paun IA; Mustaciosu CC; Mihailescu M; Calin BS; Sandu AM
    Sci Rep; 2020 Oct; 10(1):16418. PubMed ID: 33009486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation.
    Yang C; Wu L; Li G
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20150-20158. PubMed ID: 29806941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographic femtosecond laser integration of microtube arrays inside a hollow needle as a lab-in-a-needle device.
    Ji S; Li R; Cai Z; Pan D; Yang L; Hu Y; Li J; Wu D; Chu J
    Opt Lett; 2019 Oct; 44(20):5073-5076. PubMed ID: 31613267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.