BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 34130084)

  • 1. Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts.
    Junaid M; Wang J
    Water Res; 2021 Aug; 201():117319. PubMed ID: 34130084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-corona formation and associated ecotoxicological impacts of nanoplastics in the environment.
    Liu S; Junaid M; Liao H; Liu X; Wu Y; Wang J
    Sci Total Environ; 2022 Aug; 836():155703. PubMed ID: 35523339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between extracellular polymeric substances (EPS) from a marine diatom and model nanoplastic through eco-corona formation.
    Grassi G; Gabellieri E; Cioni P; Paccagnini E; Faleri C; Lupetti P; Corsi I; Morelli E
    Sci Total Environ; 2020 Jul; 725():138457. PubMed ID: 32302847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment.
    Ge Z; Lu X
    Environ Pollut; 2023 Dec; 338():122691. PubMed ID: 37797922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-corona formation on the nanomaterials in the aquatic systems lessens their toxic impact: A comprehensive review.
    Natarajan L; Jenifer MA; Mukherjee A
    Environ Res; 2021 Mar; 194():110669. PubMed ID: 33359698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp.
    Natarajan L; Omer S; Jetly N; Jenifer MA; Chandrasekaran N; Suraishkumar GK; Mukherjee A
    Environ Res; 2020 Sep; 188():109842. PubMed ID: 32846636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-Corona Dictates Mobility of Nanoplastics in Saturated Porous Media: The Critical Role of Preferential Binding of Macromolecules.
    Zhu M; Zhang Z; Zhang T; Hofmann T; Chen W
    Environ Sci Technol; 2023 Jan; 57(1):331-339. PubMed ID: 36574476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.
    Nasser F; Lynch I
    J Proteomics; 2016 Mar; 137():45-51. PubMed ID: 26376098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of extracellular polymeric substances corona on TiO
    Du T; Meng R; Qian L; Wang Z; Li T; Wu L
    Water Res; 2024 Feb; 249():120990. PubMed ID: 38086209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles.
    Zhang P; Xu XY; Zhang XL; Zou K; Liu BZ; Qing TP; Feng B
    J Hazard Mater; 2021 May; 409():124526. PubMed ID: 33218909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicological significance of bio-corona formation on micro/nanoplastics in aquatic organisms.
    Rex M C; Debroy A; Nirmala MJ; Mukherjee A
    RSC Adv; 2023 Jul; 13(33):22905-22917. PubMed ID: 37520083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquatic organisms modulate the bioreactivity of engineered nanoparticles: focus on biomolecular corona.
    Liu W; Worms IAM; Jakšić Ž; Slaveykova VI
    Front Toxicol; 2022; 4():933186. PubMed ID: 36060121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective.
    Liu S; Zhang X; Zeng K; He C; Huang Y; Xin G; Huang X
    Sci Total Environ; 2023 Feb; 858(Pt 2):159867. PubMed ID: 36334667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular assembly of extracellular polymeric substances regulating aggregation of differently charged nanoplastics and subsequent interactions with bacterial membrane.
    Liu Y; Yue T; Liu L; Zhang B; Feng H; Li S; Liu X; Dai Y; Zhao J
    J Hazard Mater; 2023 Sep; 457():131825. PubMed ID: 37315410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of algal EPS in reducing the combined toxicity of BPA and polystyrene nanoparticles to the freshwater algae Scenedesmus obliquus.
    Giri S; Christudoss AC; Chandrasekaran N; Peijnenburg WJGM; Mukherjee A
    Plant Physiol Biochem; 2023 Apr; 197():107664. PubMed ID: 36996635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algal extracellular polymeric substances (algal-EPS) for mitigating the combined toxic effects of polystyrene nanoplastics and nano-TiO
    Natarajan L; Annie Jenifer M; Peijnenburg WJGM; Mukherjee A
    Nanotoxicology; 2023 Mar; 17(2):143-156. PubMed ID: 36789517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of extracellular polymeric substances in the aggregation and biological response of micro(nano)plastics with different functional groups and sizes.
    Xiong S; Cao X; Eggleston I; Chi Y; Li A; Liu X; Zhao J; Xing B
    J Hazard Mater; 2023 Mar; 446():130713. PubMed ID: 36630882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coronas of micro/nano plastics: a key determinant in their risk assessments.
    Cao J; Yang Q; Jiang J; Dalu T; Kadushkin A; Singh J; Fakhrullin R; Wang F; Cai X; Li R
    Part Fibre Toxicol; 2022 Aug; 19(1):55. PubMed ID: 35933442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials.
    Xu L; Xu M; Wang R; Yin Y; Lynch I; Liu S
    Small; 2020 Sep; 16(36):e2003691. PubMed ID: 32780948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nanomaterials on marine invertebrates.
    Canesi L; Corsi I
    Sci Total Environ; 2016 Sep; 565():933-940. PubMed ID: 26805446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.