BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 34130145)

  • 1. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.
    Varone A; Nguyen JK; Leng L; Barrile R; Sliz J; Lucchesi C; Wen N; Gravanis A; Hamilton GA; Karalis K; Hinojosa CD
    Biomaterials; 2021 Aug; 275():120957. PubMed ID: 34130145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional microengineered vascularised endometrium-on-a-chip.
    Ahn J; Yoon MJ; Hong SH; Cha H; Lee D; Koo HS; Ko JE; Lee J; Oh S; Jeon NL; Kang YJ
    Hum Reprod; 2021 Sep; 36(10):2720-2731. PubMed ID: 34363466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabrication of human organs-on-chips.
    Huh D; Kim HJ; Fraser JP; Shea DE; Khan M; Bahinski A; Hamilton GA; Ingber DE
    Nat Protoc; 2013 Nov; 8(11):2135-57. PubMed ID: 24113786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in organ-on-a-chip technology for cardiovascular disease research.
    Liu Y; Lin L; Qiao L
    Anal Bioanal Chem; 2023 Jul; 415(18):3911-3925. PubMed ID: 36867198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research.
    Guttenplan APM; Tahmasebi Birgani Z; Giselbrecht S; Truckenmüller RK; Habibović P
    Adv Healthc Mater; 2021 Jul; 10(14):e2100371. PubMed ID: 34033239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen I Based Enzymatically Degradable Membranes for Organ-on-a-Chip Barrier Models.
    Arık YB; de Sa Vivas A; Laarveld D; van Laar N; Gemser J; Visscher T; van den Berg A; Passier R; van der Meer AD
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2998-3005. PubMed ID: 33625834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing.
    Lacombe J; Soldevila M; Zenhausern F
    Prog Mol Biol Transl Sci; 2022; 187(1):41-91. PubMed ID: 35094781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated electrochemical measurement of endothelial permeability in a 3D hydrogel-based microfluidic vascular model.
    Wong JF; Mohan MD; Young EWK; Simmons CA
    Biosens Bioelectron; 2020 Jan; 147():111757. PubMed ID: 31654819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung on a Chip for Drug Screening and Design.
    Kızılkurtlu AA; Polat T; Aydın GB; Akpek A
    Curr Pharm Des; 2018; 24(45):5386-5396. PubMed ID: 30734673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes.
    Baptista D; Moreira Teixeira L; Barata D; Tahmasebi Birgani Z; King J; van Riet S; Pasman T; Poot AA; Stamatialis D; Rottier RJ; Hiemstra PS; Carlier A; van Blitterswijk C; Habibović P; Giselbrecht S; Truckenmüller R
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2684-2699. PubMed ID: 35502997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Electrospun Membranes into Low-Absorption Thermoplastic Organ-on-Chip.
    Chuchuy J; Rogal J; Ngo T; Stadelmann K; Antkowiak L; Achberger K; Liebau S; Schenke-Layland K; Loskill P
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3006-3017. PubMed ID: 33591723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions.
    van Engeland NCA; Pollet AMAO; den Toonder JMJ; Bouten CVC; Stassen OMJA; Sahlgren CM
    Lab Chip; 2018 May; 18(11):1607-1620. PubMed ID: 29756630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.