These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Post-emergence herbicidal activity of nanoatrazine against Sousa BT; Pereira ADES; Fraceto LF; Oliveira HC; Dalazen G Heliyon; 2022 Jul; 8(7):e09902. PubMed ID: 35874087 [TBL] [Abstract][Full Text] [Related]
3. Interaction of Nanoatrazine and Target Organism: Evaluation of Fate and Photosystem II Inhibition in Hydroponically Grown Mustard ( Preisler AC; Carvalho LB; Saraiva-Santos T; Verri WA; Mayer JLS; Fraceto LF; Dalazen G; Oliveira HC J Agric Food Chem; 2022 Jun; 70(25):7644-7652. PubMed ID: 35675570 [TBL] [Abstract][Full Text] [Related]
4. Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Preisler AC; Pereira AE; Campos EV; Dalazen G; Fraceto LF; Oliveira HC Pest Manag Sci; 2020 Jan; 76(1):141-149. PubMed ID: 31081245 [TBL] [Abstract][Full Text] [Related]
5. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. Oliveira HC; Stolf-Moreira R; Martinez CB; Grillo R; de Jesus MB; Fraceto LF PLoS One; 2015; 10(7):e0132971. PubMed ID: 26186597 [TBL] [Abstract][Full Text] [Related]
6. Chitosan Coating as a Strategy to Increase Postemergent Herbicidal Efficiency and Alter the Interaction of Nanoatrazine with Sousa BT; Carvalho LB; Preisler AC; Saraiva-Santos T; Oliveira JL; Verri WA; Dalazen G; Fraceto LF; Oliveira H ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38995313 [TBL] [Abstract][Full Text] [Related]
7. Use of nontarget organism Chironomus sancticaroli to study the toxic effects of nanoatrazine. de Albuquerque FP; de Oliveira JL; Dos Santos Machado L; Richardi VS; da Silva MAN; Pompêo MLM; Fraceto LF; Carlos VM Ecotoxicology; 2021 May; 30(4):733-750. PubMed ID: 33821358 [TBL] [Abstract][Full Text] [Related]
8. A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. Bombo AB; Pereira AES; Lusa MG; de Medeiros Oliveira E; de Oliveira JL; Campos EVR; de Jesus MB; Oliveira HC; Fraceto LF; Mayer JLS J Agric Food Chem; 2019 Apr; 67(16):4453-4462. PubMed ID: 30933503 [TBL] [Abstract][Full Text] [Related]
9. Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Pereira AE; Grillo R; Mello NF; Rosa AH; Fraceto LF J Hazard Mater; 2014 Mar; 268():207-15. PubMed ID: 24508945 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Oliveira HC; Stolf-Moreira R; Martinez CB; Sousa GF; Grillo R; de Jesus MB; Fraceto LF Front Chem; 2015; 3():61. PubMed ID: 26539429 [TBL] [Abstract][Full Text] [Related]
12. Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. de Oliveira JL; Campos EV; Gonçalves da Silva CM; Pasquoto T; Lima R; Fraceto LF J Agric Food Chem; 2015 Jan; 63(2):422-32. PubMed ID: 25537071 [TBL] [Abstract][Full Text] [Related]
13. An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology. de Albuquerque FP; de Oliveira JL; Moschini-Carlos V; Fraceto LF Sci Total Environ; 2020 Jan; 700():134868. PubMed ID: 31706089 [TBL] [Abstract][Full Text] [Related]
14. Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Jacques MT; Oliveira JL; Campos EV; Fraceto LF; Ávila DS Ecotoxicol Environ Saf; 2017 May; 139():245-253. PubMed ID: 28160702 [TBL] [Abstract][Full Text] [Related]
15. The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. Wu J; Zhai Y; Monikh FA; Arenas-Lago D; Grillo R; Vijver MG; Peijnenburg WJGM J Agric Food Chem; 2021 Oct; 69(42):12527-12540. PubMed ID: 34657419 [TBL] [Abstract][Full Text] [Related]
16. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. Grillo R; Pereira AE; Nishisaka CS; de Lima R; Oehlke K; Greiner R; Fraceto LF J Hazard Mater; 2014 Aug; 278():163-71. PubMed ID: 24968252 [TBL] [Abstract][Full Text] [Related]
17. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather. Landau CA; Hager AG; Tranel PJ; Davis AS; Martin NF; Williams MM Pest Manag Sci; 2021 Jun; 77(6):2683-2689. PubMed ID: 33512060 [TBL] [Abstract][Full Text] [Related]
18. Combining weed efficacy, economics and environmental considerations for improved herbicide management in the Great Barrier Reef catchment area. Fillols E; Davis AM; Lewis SE; Ward A Sci Total Environ; 2020 Jun; 720():137481. PubMed ID: 32145617 [TBL] [Abstract][Full Text] [Related]
19. Recovery of terrestrial plants in vegetative vigor and seedling emergence tests from exposure to atrazine. Brain RA; Hoberg J Environ Toxicol Chem; 2016 May; 35(5):1284-96. PubMed ID: 26530633 [TBL] [Abstract][Full Text] [Related]
20. Can atrazine loaded nanocapsules reduce the toxic effects of this herbicide on the fish Prochilodus lineatus? A multibiomarker approach. Andrade LL; do Espirito Santo Pereira A; Fernandes Fraceto L; Bueno Dos Reis Martinez C Sci Total Environ; 2019 May; 663():548-559. PubMed ID: 30721846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]