These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34130167)

  • 1. Nitrogen fertilizer affects rhizosphere Cd re-mobilization by mediating gene AmALM2 and AmALMT7 expression in edible amaranth roots.
    Xu ZM; Wang JF; Li WL; Wang YF; He T; Wang FP; Lu ZY; Li QS
    J Hazard Mater; 2021 Sep; 418():126310. PubMed ID: 34130167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial mechanisms in nitrogen fertilization: Modulating the re-mobilization of clay mineral-bound cadmium in agricultural soils.
    Wang JF; Liu C; Xu ZM; Wang FP; Sun YY; Huang JW; Li QS
    Sci Total Environ; 2024 May; 926():171809. PubMed ID: 38513845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen fertilizer management affects remobilization of the immobilized cadmium in soil and its accumulation in crop tissues.
    Wang JF; Li WL; Li QS; Wang LL; He T; Wang FP; Xu ZM
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):31640-31652. PubMed ID: 33609242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urea reduces the sustainability of soil Cd immobilization by upregulating the expression of AmSTOP1 and AmMATE genes in edible amaranth roots.
    Wang FP; Wang JF; He T; Tian P; Song XQ; Li QS
    Environ Pollut; 2024 Mar; 345():123505. PubMed ID: 38325515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: A metabolomic analysis.
    Guo SH; Hu N; Li QS; Yang P; Wang LL; Xu ZM; Chen HJ; He BY; Zeng EY
    Environ Pollut; 2018 Oct; 241():422-431. PubMed ID: 29860158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils.
    Xu ZM; Li QS; Yang P; Ye HJ; Chen ZS; Guo SH; Wang LL; He BY; Zeng EY
    Environ Pollut; 2017 May; 224():89-97. PubMed ID: 28262375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.).
    He BY; Yu DP; Chen Y; Shi JL; Xia Y; Li QS; Wang LL; Ling L; Zeng EY
    Chemosphere; 2017 Mar; 171():588-594. PubMed ID: 28043071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving cadmium mobilization by phosphate-solubilizing bacteria via regulating organic acids metabolism with potassium.
    Li WL; Wang JF; Lv Y; Dong HJ; Wang LL; He T; Li QS
    Chemosphere; 2020 Apr; 244():125475. PubMed ID: 31812769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological mechanisms of cadmium accumulation in edible Amaranth (Amaranthus mangostanus L.) cultivars promoted by salinity: A transcriptome analysis.
    Guo SH; Jiang LY; Xu ZM; Li QS; Wang JF; Ye HJ; Wang LL; He BY; Zhou C; Zeng EY
    Environ Pollut; 2020 Jul; 262():114304. PubMed ID: 32179214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of cadmium-contaminated soils using Brassica napus: Effect of nitrogen fertilizers.
    Zeng X; Zou D; Wang A; Zhou Y; Liu Y; Li Z; Liu F; Wang H; Zeng Q; Xiao Z
    J Environ Manage; 2020 Feb; 255():109885. PubMed ID: 31765948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving cadmium accumulation by Solanum nigrum L. via regulating rhizobacterial community and metabolic function with phosphate-solubilizing bacteria colonization.
    He T; Xu ZJ; Wang JF; Wang FP; Zhou XF; Wang LL; Li QS
    Chemosphere; 2022 Jan; 287(Pt 2):132209. PubMed ID: 34826911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars.
    Xin J; Huang B; Dai H; Zhou W; Yi Y; Peng L
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6254-61. PubMed ID: 25408079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere.
    Qiao D; Lu H; Zhang X
    Environ Pollut; 2020 Dec; 267():115452. PubMed ID: 32871485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Chemical characteristics of the rhizosphere soil of water spinach cultivars differing in Cd accumulation].
    Gong YL; Yang ZY
    Ying Yong Sheng Tai Xue Bao; 2014 Aug; 25(8):2377-84. PubMed ID: 25509092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii.
    Liu W; Zhang C; Hu P; Luo Y; Wu L; Sale P; Tang C
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1246-53. PubMed ID: 26358206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous Glycinebetaine Promotes Soil Cadmium Uptake by Edible Amaranth Grown during Subtropical Hot Season.
    Yao WQ; Lei YK; Yang P; Li QS; Wang LL; He BY; Xu ZM; Zhou C; Ye HJ
    Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30134519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect and mechanism of commonly used four nitrogen fertilizers and three organic fertilizers on Solanum nigrum L. hyperaccumulating Cd.
    Yang W; Dai H; Dou X; Zhang Q; Wei S
    Environ Sci Pollut Res Int; 2019 May; 26(13):12940-12947. PubMed ID: 30891702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the cadmium phytoextraction potential of tobacco (Nicotiana tabacum) and rhizosphere micro-characteristics under different cadmium levels.
    Li X; Li Y; Zhu X; Gui X; Ma C; Peng W; Li Y; Zhang Y; Huang W; Hua D; Jia S; Wu M
    Chemosphere; 2022 Jan; 286(Pt 2):131714. PubMed ID: 34426125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomineralization of Cd
    Wang JF; Li WL; Ahmad I; He BY; Wang LL; He T; Wang FP; Xu ZM; Li QS
    Chemosphere; 2021 Nov; 283():131095. PubMed ID: 34144288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red mud based passivator reduced Cd accumulation in edible amaranth by influencing root organic matter metabolism and soil aggregate distribution.
    Xu Z; Lu Z; Zhang L; Fan H; Wang Y; Li J; Lin Y; Liu H; Guo S; Xu M; Wang J
    Environ Pollut; 2021 Apr; 275():116543. PubMed ID: 33556735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.