These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34130178)
1. Effects of dynamic adsorption on bubble formation and coalescence in partitioned-EDGE devices. Deng B; Schroën K; de Ruiter J J Colloid Interface Sci; 2021 Nov; 602():316-324. PubMed ID: 34130178 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of bubble formation in spontaneous microfluidic devices: Controlling dynamic adsorption via liquid phase properties. Deng B; Schroën K; de Ruiter J J Colloid Interface Sci; 2022 Sep; 622():218-227. PubMed ID: 35504099 [TBL] [Abstract][Full Text] [Related]
3. Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System. Deng B; Neef T; Schroën K; de Ruiter J Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564527 [TBL] [Abstract][Full Text] [Related]
4. Measurements of Static and Dynamic Bubble Surface Tension Using a Deformation-Based Microfluidic Tensiometer. Liu S; Dutcher CS J Phys Chem B; 2021 Dec; 125(51):13916-13927. PubMed ID: 34919401 [TBL] [Abstract][Full Text] [Related]
5. Capillary pressure-based measurement of dynamic interfacial tension in a spontaneous microfluidic sensor. Deng B; Schroën K; Steegmans M; de Ruiter J Lab Chip; 2022 Oct; 22(20):3860-3868. PubMed ID: 36103197 [TBL] [Abstract][Full Text] [Related]
6. Coalescence of bubbles translating through a tube. Almatroushi E; Borhan A Ann N Y Acad Sci; 2006 Sep; 1077():508-26. PubMed ID: 17124143 [TBL] [Abstract][Full Text] [Related]
7. Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. Sunartio D; Ashokkumar M; Grieser F J Am Chem Soc; 2007 May; 129(18):6031-6. PubMed ID: 17439213 [TBL] [Abstract][Full Text] [Related]
8. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field. Jiao J; He Y; Yasui K; Kentish SE; Ashokkumar M; Manasseh R; Lee J Ultrason Sonochem; 2015 Jan; 22():70-7. PubMed ID: 25043557 [TBL] [Abstract][Full Text] [Related]
9. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics. Tan SY; Ata S; Wanless EJ J Phys Chem B; 2013 Jul; 117(28):8579-88. PubMed ID: 23796213 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic Investigation of the Ion-Specific Effect on Bubble Coalescence in Salt Solutions. Guo H; Liu Q; Huang L; Liu J; Bao X; Zhang F; Cao Y; Gui X; Xing Y; Xu M Langmuir; 2023 Jun; 39(23):8234-8243. PubMed ID: 37262019 [TBL] [Abstract][Full Text] [Related]
11. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: osmotic effect versus interfacial film stabilization. Szíjjártó C; Rossi S; Waton G; Krafft MP Langmuir; 2012 Jan; 28(2):1182-9. PubMed ID: 22176688 [TBL] [Abstract][Full Text] [Related]
12. Application of Microfluidics in the Production and Analysis of Food Foams. Deng B; de Ruiter J; Schroën K Foods; 2019 Oct; 8(10):. PubMed ID: 31614474 [TBL] [Abstract][Full Text] [Related]
13. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions. Yaminsky VV; Ohnishi S; Vogler EA; Horn RG Langmuir; 2010 Jun; 26(11):8061-74. PubMed ID: 20146434 [TBL] [Abstract][Full Text] [Related]
14. Hydrate Growth on Methane Gas Bubbles in the Presence of Salt. Yu LCY; Charlton TB; Aman ZM; Wu DT; Koh CA Langmuir; 2020 Jan; 36(1):84-95. PubMed ID: 31820993 [TBL] [Abstract][Full Text] [Related]
15. Coalescence of surface bubbles: The crucial role of motion-induced dynamic adsorption layer. Zawala J; Miguet J; Rastogi P; Atasi O; Borkowski M; Scheid B; Fuller GG Adv Colloid Interface Sci; 2023 Jul; 317():102916. PubMed ID: 37269558 [TBL] [Abstract][Full Text] [Related]
16. Gas micronuclei that underlie decompression bubbles and decompression sickness have not been identified. Doolette DJ Diving Hyperb Med; 2019 Mar; 49(1):64. PubMed ID: 30856670 [TBL] [Abstract][Full Text] [Related]
17. Direct observation of pH-induced coalescence of latex-stabilized bubbles using high-speed video imaging. Ata S; Davis ES; Dupin D; Armes SP; Wanless EJ Langmuir; 2010 Jun; 26(11):7865-74. PubMed ID: 20415444 [TBL] [Abstract][Full Text] [Related]
19. Influence of surface active substances on bubble motion and collision with various interfaces. Malysa K; Krasowska M; Krzan M Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293 [TBL] [Abstract][Full Text] [Related]