These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34130268)
1. Detection of fixation points using a small visual landmark for brain-computer interfaces. Zhou X; Xu M; Xiao X; Wang Y; Jung TP; Ming D J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130268 [No Abstract] [Full Text] [Related]
2. Effects of stimulus position on the classification of miniature asymmetric VEPs for brain-computer interfaces. Xu M; Zhou X; Xiao X; Wang Y; Jung TP; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5956-5959. PubMed ID: 31947204 [TBL] [Abstract][Full Text] [Related]
3. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli. Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431 [TBL] [Abstract][Full Text] [Related]
4. Enhancement for P300-speller classification using multi-window discriminative canonical pattern matching. Xiao X; Xu M; Han J; Yin E; Liu S; Zhang X; Jung TP; Ming D J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34096888 [No Abstract] [Full Text] [Related]
5. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI). Kaufmann T; Kübler A J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406 [TBL] [Abstract][Full Text] [Related]
6. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision. Zhao X; Wang Z; Zhang M; Hu H J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640 [No Abstract] [Full Text] [Related]
7. A Single-Stimulus, Multitarget BCI Based on Retinotopic Mapping of Motion-Onset VEPs. Chen J; Li Z; Hong B; Maye A; Engel AK; Zhang D IEEE Trans Biomed Eng; 2019 Feb; 66(2):464-470. PubMed ID: 29993456 [TBL] [Abstract][Full Text] [Related]
8. Discriminative Canonical Pattern Matching for Single-Trial Classification of ERP Components. Xiao X; Xu M; Jin J; Wang Y; Jung TP; Ming D IEEE Trans Biomed Eng; 2020 Aug; 67(8):2266-2275. PubMed ID: 31831401 [TBL] [Abstract][Full Text] [Related]
9. A novel visual brain-computer interfaces paradigm based on evoked related potentials evoked by weak and small number of stimuli. Xiao X; Gao R; Zhou X; Yi W; Xu F; Wang K; Xu M; Ming D Front Neurosci; 2023; 17():1178283. PubMed ID: 37342465 [TBL] [Abstract][Full Text] [Related]
10. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces. Waytowich NR; Krusienski DJ J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047 [TBL] [Abstract][Full Text] [Related]
11. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials Yue L; Xiao X; Xu M; Chen L; Wang Y; Jung TP; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3090-3093. PubMed ID: 33018658 [TBL] [Abstract][Full Text] [Related]
12. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Punsawad Y; Wongsawat Y Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060 [TBL] [Abstract][Full Text] [Related]
13. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. Lee MH; Williamson J; Lee YE; Lee SW Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642 [TBL] [Abstract][Full Text] [Related]
14. Towards a fully spatially coded brain-computer interface: simultaneous decoding of visual eccentricity and direction. Chen J; Hong B; Wang Y; Gao X; Zhang D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3091-3094. PubMed ID: 31946541 [TBL] [Abstract][Full Text] [Related]
15. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]
17. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern. Borirakarawin M; Punsawad Y Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419 [TBL] [Abstract][Full Text] [Related]
18. A comparison of classification methods for recognizing single-trial P300 in brain-computer interfaces Xiao X; Xu M; Wang Y; Jung TP; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3032-3035. PubMed ID: 31946527 [TBL] [Abstract][Full Text] [Related]
19. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces. An X; Höhne J; Ming D; Blankertz B PLoS One; 2014; 9(10):e111070. PubMed ID: 25350547 [TBL] [Abstract][Full Text] [Related]
20. Separable EEG Features Induced by Timing Prediction for Active Brain-Computer Interfaces. Meng J; Xu M; Wang K; Meng Q; Han J; Xiao X; Liu S; Ming D Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]