BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 3413085)

  • 1. Differentiation of bipotential glial precursors into oligodendrocytes is promoted by interaction with type-1 astrocytes in cerebellar cultures.
    Aloisi F; Agresti C; D'Urso D; Levi G
    Proc Natl Acad Sci U S A; 1988 Aug; 85(16):6167-71. PubMed ID: 3413085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and "neuron-like" gamma-aminobutyric acid transport.
    Levi G; Gallo V; Ciotti MT
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1504-8. PubMed ID: 3513179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterotypic and homotypic cellular interactions influencing the growth and differentiation of bipotential oligodendrocyte-type-2 astrocyte progenitors in culture.
    Agresti C; Aloisi F; Levi G
    Dev Biol; 1991 Mar; 144(1):16-29. PubMed ID: 1995394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of glial precursor cells from developing rat brain in vitro.
    Norton WT; Farooq M
    Brain Res Dev Brain Res; 1993 Apr; 72(2):193-202. PubMed ID: 8485843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of cerebellar bipotential glial precursors into oligodendrocytes in primary culture: developmental profile of surface antigens and mitotic activity.
    Levi G; Aloisi F; Wilkin GP
    J Neurosci Res; 1987; 18(3):407-17. PubMed ID: 3437464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and differentiation of glial precursor cells in the rat cerebellum.
    Levine JM; Stincone F; Lee YS
    Glia; 1993 Apr; 7(4):307-21. PubMed ID: 8320001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment, characterization, and evolution of cultures enriched in type-2 astrocytes.
    Aloisi F; Agresti C; Levi G
    J Neurosci Res; 1988; 21(2-4):188-98. PubMed ID: 3216420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of a bipotential glial progenitor cell in a single cell microculture.
    Temple S; Raff MC
    Nature; 1985 Jan 17-23; 313(5999):223-5. PubMed ID: 3969137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cells positive for the O4 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodendrocytes.
    Trotter J; Schachner M
    Brain Res Dev Brain Res; 1989 Mar; 46(1):115-22. PubMed ID: 2706765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes.
    Louis JC; Magal E; Muir D; Manthorpe M; Varon S
    J Neurosci Res; 1992 Jan; 31(1):193-204. PubMed ID: 1613821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitogenic effect of a human placental factor on astrocytes and glial precursors.
    Mercanti D; Luzzatto E; Ciotti MT; Levi G
    Exp Cell Res; 1987 Jan; 168(1):182-90. PubMed ID: 3536541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytes cultured from mature brain derive from glial precursor cells.
    Norton WT; Farooq M
    J Neurosci; 1989 Mar; 9(3):769-75. PubMed ID: 2926481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligodendroblasts distinguished from O-2A glial progenitors by surface phenotype (O4+GalC-) and response to cytokines using signal transducer LIFR beta.
    Gard AL; Williams WC; Burrell MR
    Dev Biol; 1995 Feb; 167(2):596-608. PubMed ID: 7875381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the oligodendroglial differentiation of bipotential oligodendrocyte-type 2 astrocyte progenitors promoted by autocrine factors?
    Levi G; Agresti C; D'Urso D; Aloisi F
    Neurosci Lett; 1991 Jul; 128(1):37-41. PubMed ID: 1922946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a slowly proliferative cell along the oligodendrocyte differentiation pathway.
    Dubois-Dalcq M
    EMBO J; 1987 Sep; 6(9):2587-95. PubMed ID: 3678201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative biochemical, morphological, and immunocytochemical studies between C-6 glial cells of early and late passages and advanced passages of glial cells derived from aged mouse cerebral hemispheres.
    Lee K; Kentroti S; Billie H; Bruce C; Vernadakis A
    Glia; 1992; 6(4):245-57. PubMed ID: 1361180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of astrocytes and oligodendrocytes from germinal matrix cells in primary culture.
    Goldman JE; Geier SS; Hirano M
    J Neurosci; 1986 Jan; 6(1):52-60. PubMed ID: 3511189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular matrix of cultured glial cells: selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors.
    Gallo V; Bertolotto A
    Exp Cell Res; 1990 Apr; 187(2):211-23. PubMed ID: 2108048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental appearance, antigenic profile, and proliferation of glial cells of the human embryonic spinal cord: an immunocytochemical study using dissociated cultured cells.
    Aloisi F; Giampaolo A; Russo G; Peschle C; Levi G
    Glia; 1992; 5(3):171-81. PubMed ID: 1375191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astrocyte precursors in neonatal rat spinal cord cultures.
    Fok-Seang J; Miller RH
    J Neurosci; 1992 Jul; 12(7):2751-64. PubMed ID: 1613556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.