These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34131136)

  • 1. In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations.
    Newton TH; Reimann MW; Abdellah M; Chevtchenko G; Muller EB; Markram H
    Nat Commun; 2021 Jun; 12(1):3630. PubMed ID: 34131136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between voltage-sensitive dye imaging signals and spiking activity of neural populations in primate V1.
    Chen Y; Palmer CR; Seidemann E
    J Neurophysiol; 2012 Jun; 107(12):3281-95. PubMed ID: 22422999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.
    Grinvald A; Petersen CC
    Adv Exp Med Biol; 2015; 859():273-96. PubMed ID: 26238057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo.
    Grinvald A; Omer D; Naaman S; Sharon D
    Adv Exp Med Biol; 2015; 859():243-71. PubMed ID: 26238056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-Sensitive Dye Imaging of Neocortical Activity.
    Grinvald A; Omer DB; Sharon D; Vanzetta I; Hildesheim R
    Cold Spring Harb Protoc; 2016 Jan; 2016(1):pdb.top089367. PubMed ID: 26729915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in voltage-sensitive dye imaging for neuroscience.
    Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey.
    Reynaud A; Takerkart S; Masson GS; Chavane F
    Neuroimage; 2011 Jan; 54(2):1196-210. PubMed ID: 20800686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-sensitive dye imaging: Technique review and models.
    Chemla S; Chavane F
    J Physiol Paris; 2010; 104(1-2):40-50. PubMed ID: 19909809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons.
    Zerlaut Y; Chemla S; Chavane F; Destexhe A
    J Comput Neurosci; 2018 Feb; 44(1):45-61. PubMed ID: 29139050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging.
    Markounikau V; Igel C; Grinvald A; Jancke D
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A toolbox for spatiotemporal analysis of voltage-sensitive dye imaging data in brain slices.
    Bourgeois EB; Johnson BN; McCoy AJ; Trippa L; Cohen AS; Marsh ED
    PLoS One; 2014; 9(9):e108686. PubMed ID: 25259520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.
    Omer DB; Hildesheim R; Grinvald A
    Neuroimage; 2013 Nov; 82():237-51. PubMed ID: 23689017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex dynamics of V1 population responses explained by a simple gain-control model.
    Sit YF; Chen Y; Geisler WS; Miikkulainen R; Seidemann E
    Neuron; 2009 Dec; 64(6):943-56. PubMed ID: 20064399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing.
    Ayzenshtat I; Meirovithz E; Edelman H; Werner-Reiss U; Bienenstock E; Abeles M; Slovin H
    J Neurosci; 2010 Aug; 30(33):11232-45. PubMed ID: 20720131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disparate nonlinear neural dynamics measured with different techniques in macaque and human V1.
    Zhou J; Whitmire M; Chen Y; Seidemann E
    Sci Rep; 2024 Jun; 14(1):13193. PubMed ID: 38851784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially Structured Sparse Morphological Component Separation for voltage-sensitive dye optical imaging.
    Raguet H; Monier C; Foubert L; Ferezou I; Fregnac Y; Peyré G
    J Neurosci Methods; 2016 Jan; 257():76-96. PubMed ID: 26434707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging.
    Onat S; Nortmann N; Rekauzke S; König P; Jancke D
    Neuroimage; 2011 Apr; 55(4):1763-70. PubMed ID: 21232616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-sweep voltage-sensitive dye imaging of interacting identified neurons.
    Stein W; Städele C; Andras P
    J Neurosci Methods; 2011 Jan; 194(2):224-34. PubMed ID: 20969892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between two propagating waves in rat visual cortex.
    Gao X; Xu W; Wang Z; Takagaki K; Li B; Wu JY
    Neuroscience; 2012 Aug; 216():57-69. PubMed ID: 22561730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.