These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 34131195)
1. A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites. Thapa N; Chaudhari M; Iannetta AA; White C; Roy K; Newman RH; Hicks LM; Kc DB Sci Rep; 2021 Jun; 11(1):12550. PubMed ID: 34131195 [TBL] [Abstract][Full Text] [Related]
2. The phosphorylated redox proteome of Chlamydomonas reinhardtii: Revealing novel means for regulation of protein structure and function. McConnell EW; Werth EG; Hicks LM Redox Biol; 2018 Jul; 17():35-46. PubMed ID: 29673699 [TBL] [Abstract][Full Text] [Related]
3. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Wang H; Gau B; Slade WO; Juergens M; Li P; Hicks LM Mol Cell Proteomics; 2014 Sep; 13(9):2337-53. PubMed ID: 24917610 [TBL] [Abstract][Full Text] [Related]
4. Label-Free Quantitative Phosphoproteomics for Algae. Ford MM; Lawrence SR; Werth EG; McConnell EW; Hicks LM Methods Mol Biol; 2020; 2139():197-211. PubMed ID: 32462588 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. Wagner V; Gessner G; Heiland I; Kaminski M; Hawat S; Scheffler K; Mittag M Eukaryot Cell; 2006 Mar; 5(3):457-68. PubMed ID: 16524901 [TBL] [Abstract][Full Text] [Related]
6. TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture. Wang X; Zhang Z; Zhang C; Meng X; Shi X; Qu P Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457080 [TBL] [Abstract][Full Text] [Related]
7. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information. Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607 [TBL] [Abstract][Full Text] [Related]
8. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. Werth EG; McConnell EW; Couso Lianez I; Perrine Z; Crespo JL; Umen JG; Hicks LM New Phytol; 2019 Jan; 221(1):247-260. PubMed ID: 30040123 [TBL] [Abstract][Full Text] [Related]
9. The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Wagner V; Ullmann K; Mollwo A; Kaminski M; Mittag M; Kreimer G Plant Physiol; 2008 Feb; 146(2):772-88. PubMed ID: 18065559 [TBL] [Abstract][Full Text] [Related]
12. Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry. Tan H; Blanco DB; Xie B; Li Y; Wu Z; Chi H; Peng J Methods Mol Biol; 2021; 2285():297-317. PubMed ID: 33928561 [TBL] [Abstract][Full Text] [Related]
13. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Terashima M; Specht M; Hippler M Curr Genet; 2011 Jun; 57(3):151-68. PubMed ID: 21533645 [TBL] [Abstract][Full Text] [Related]
14. Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom. Gao X; Jin C; Ren J; Yao X; Xue Y Genomics; 2008 Dec; 92(6):457-63. PubMed ID: 18817865 [TBL] [Abstract][Full Text] [Related]
15. Quantitative proteome analyses identify PrfA-responsive proteins and phosphoproteins in Listeria monocytogenes. Misra SK; Moussan Désirée Aké F; Wu Z; Milohanic E; Cao TN; Cossart P; Deutscher J; Monnet V; Archambaud C; Henry C J Proteome Res; 2014 Dec; 13(12):6046-57. PubMed ID: 25383790 [TBL] [Abstract][Full Text] [Related]
16. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. Werth EG; McConnell EW; Gilbert TS; Couso Lianez I; Perez CA; Manley CK; Graves LM; Umen JG; Hicks LM Plant J; 2017 Jan; 89(2):416-426. PubMed ID: 27671103 [TBL] [Abstract][Full Text] [Related]
17. Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii. Ravi A; Guo S; Rasala B; Tran M; Mayfield S; Nikolov ZL Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29462927 [TBL] [Abstract][Full Text] [Related]
18. A Transfer-Learning-Based Deep Convolutional Neural Network for Predicting Leukemia-Related Phosphorylation Sites from Protein Primary Sequences. He J; Wu Y; Pu X; Li M; Guo Y Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163663 [TBL] [Abstract][Full Text] [Related]
19. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network. Khalili E; Ramazi S; Ghanati F; Kouchaki S Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280 [TBL] [Abstract][Full Text] [Related]
20. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture. Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]