These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34131195)

  • 21. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii.
    Baier T; Jacobebbinghaus N; Einhaus A; Lauersen KJ; Kruse O
    PLoS Genet; 2020 Jul; 16(7):e1008944. PubMed ID: 32730252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C; Ye M; Liu Z; Cheng H; Jiang X; Han G; Songyang Z; Tan Y; Wang H; Ren J; Xue Y; Zou H
    Mol Cell Proteomics; 2012 Oct; 11(10):1070-83. PubMed ID: 22798277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The different proteomes of Chlamydomonas reinhardtii.
    Valledor L; Recuenco-Munoz L; Egelhofer V; Wienkoop S; Weckwerth W
    J Proteomics; 2012 Oct; 75(18):5883-7. PubMed ID: 22967953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico prediction of mRNA poly(A) sites in Chlamydomonas reinhardtii.
    Wu X; Ji G; Zeng Y
    Mol Genet Genomics; 2012 Dec; 287(11-12):895-907. PubMed ID: 23108961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites.
    Wolschin F; Weckwerth W
    Plant Methods; 2005 Nov; 1(1):9. PubMed ID: 16270910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation.
    Pérez-Pérez ME; Mauriès A; Maes A; Tourasse NJ; Hamon M; Lemaire SD; Marchand CH
    Mol Plant; 2017 Aug; 10(8):1107-1125. PubMed ID: 28739495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project.
    Cardol P; González-Halphen D; Reyes-Prieto A; Baurain D; Matagne RF; Remacle C
    Plant Physiol; 2005 Feb; 137(2):447-59. PubMed ID: 15710684
    [No Abstract]   [Full Text] [Related]  

  • 28. Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii.
    Boesger J; Wagner V; Weisheit W; Mittag M
    Eukaryot Cell; 2009 Jul; 8(7):922-32. PubMed ID: 19429781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel method for predicting post-translational modifications on serine and threonine sites by using site-modification network profiles.
    Wang M; Jiang Y; Xu X
    Mol Biosyst; 2015 Nov; 11(11):3092-100. PubMed ID: 26344496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Profiling of Histidine Phosphoproteome in Danio rerio by TiO
    Gao Y; Lee H; Kwon OK; Cheng Z; Tan M; Kim KT; Lee S
    Proteomics; 2019 May; 19(9):e1800471. PubMed ID: 30864180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative phosphoproteomics to identify targets of the clock-relevant casein kinase 1 in C. reinhardtii Flagella.
    Boesger J; Wagner V; Weisheit W; Mittag M
    Methods Mol Biol; 2014; 1158():187-202. PubMed ID: 24792052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites.
    Siraj A; Lim DY; Tayara H; Chong KT
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34064731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach.
    Chiou SH; Huang CH; Lee IL; Wang YT; Liu NY; Tsay YG; Chen YJ
    Mol Vis; 2010 Feb; 16():294-302. PubMed ID: 20182557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using ATCLSTM-Kcr to predict and generate the human lysine crotonylation database.
    Yang YH; Wu SF; Kong J; Zhu YP; Liu JF; Yang JT
    J Proteomics; 2023 Jun; 281():104905. PubMed ID: 37059219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii.
    Turkina MV; Kargul J; Blanco-Rivero A; Villarejo A; Barber J; Vener AV
    Mol Cell Proteomics; 2006 Aug; 5(8):1412-25. PubMed ID: 16670252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information.
    Hasan MM; Rashid MM; Khatun MS; Kurata H
    Sci Rep; 2019 Jun; 9(1):8258. PubMed ID: 31164681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepNGlyPred: A Deep Neural Network-Based Approach for Human N-Linked Glycosylation Site Prediction.
    Pakhrin SC; Aoki-Kinoshita KF; Caragea D; Kc DB
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy 1 from Chlamydomonas reinhardtii.
    Waltenberger H; Schneid C; Grosch JO; Bareiss A; Mittag M
    Mol Genet Genomics; 2001 Mar; 265(1):180-8. PubMed ID: 11370865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits.
    Zhao B; Schneid C; Iliev D; Schmidt EM; Wagner V; Wollnik F; Mittag M
    Eukaryot Cell; 2004 Jun; 3(3):815-25. PubMed ID: 15190002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.