These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 34131321)
1. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Zhang K; Liu X; Xu J; Yuan J; Cai W; Chen T; Wang K; Gao Y; Nie S; Xu X; Qin X; Su Y; Xu W; Olvera A; Xue K; Li Z; Zhang M; Zeng X; Zhang CL; Li O; Zhang EE; Zhu J; Xu Y; Kermany D; Zhou K; Pan Y; Li S; Lai IF; Chi Y; Wang C; Pei M; Zang G; Zhang Q; Lau J; Lam D; Zou X; Wumaier A; Wang J; Shen Y; Hou FF; Zhang P; Xu T; Zhou Y; Wang G Nat Biomed Eng; 2021 Jun; 5(6):533-545. PubMed ID: 34131321 [TBL] [Abstract][Full Text] [Related]
2. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Sabanayagam C; Xu D; Ting DSW; Nusinovici S; Banu R; Hamzah H; Lim C; Tham YC; Cheung CY; Tai ES; Wang YX; Jonas JB; Cheng CY; Lee ML; Hsu W; Wong TY Lancet Digit Health; 2020 Jun; 2(6):e295-e302. PubMed ID: 33328123 [TBL] [Abstract][Full Text] [Related]
3. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images. Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702 [TBL] [Abstract][Full Text] [Related]
4. Metadata information and fundus image fusion neural network for hyperuricemia classification in diabetes. Wei J; Xu Y; Wang H; Niu T; Jiang Y; Shen Y; Su L; Dou T; Peng Y; Bi L; Xu X; Wang Y; Liu K Comput Methods Programs Biomed; 2024 Nov; 256():108382. PubMed ID: 39213898 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
6. Detection of anaemia from retinal fundus images via deep learning. Mitani A; Huang A; Venugopalan S; Corrado GS; Peng L; Webster DR; Hammel N; Liu Y; Varadarajan AV Nat Biomed Eng; 2020 Jan; 4(1):18-27. PubMed ID: 31873211 [TBL] [Abstract][Full Text] [Related]
7. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. Liu H; Li L; Wormstone IM; Qiao C; Zhang C; Liu P; Li S; Wang H; Mou D; Pang R; Yang D; Zangwill LM; Moghimi S; Hou H; Bowd C; Jiang L; Chen Y; Hu M; Xu Y; Kang H; Ji X; Chang R; Tham C; Cheung C; Ting DSW; Wong TY; Wang Z; Weinreb RN; Xu M; Wang N JAMA Ophthalmol; 2019 Dec; 137(12):1353-1360. PubMed ID: 31513266 [TBL] [Abstract][Full Text] [Related]
8. Prediction of cardiovascular risk factors from retinal fundus photographs: Validation of a deep learning algorithm in a prospective non-interventional study in Kenya. White T; Selvarajah V; Wolfhagen-Sand F; Svangård N; Mohankumar G; Fenici P; Rough K; Onyango N; Lyons K; Mack C; Nduba V; Noorali Saleh M; Abayo I; Siddiqui A; Majdanska-Strzalka M; Kaszubska K; Hegelund-Myrback T; Esterline R; Manzur A; Parker VER Diabetes Obes Metab; 2024 Jul; 26(7):2722-2731. PubMed ID: 38618987 [TBL] [Abstract][Full Text] [Related]
9. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Rim TH; Lee G; Kim Y; Tham YC; Lee CJ; Baik SJ; Kim YA; Yu M; Deshmukh M; Lee BK; Park S; Kim HC; Sabayanagam C; Ting DSW; Wang YX; Jonas JB; Kim SS; Wong TY; Cheng CY Lancet Digit Health; 2020 Oct; 2(10):e526-e536. PubMed ID: 33328047 [TBL] [Abstract][Full Text] [Related]
10. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Cen LP; Ji J; Lin JW; Ju ST; Lin HJ; Li TP; Wang Y; Yang JF; Liu YF; Tan S; Tan L; Li D; Wang Y; Zheng D; Xiong Y; Wu H; Jiang J; Wu Z; Huang D; Shi T; Chen B; Yang J; Zhang X; Luo L; Huang C; Zhang G; Huang Y; Ng TK; Chen H; Chen W; Pang CP; Zhang M Nat Commun; 2021 Aug; 12(1):4828. PubMed ID: 34376678 [TBL] [Abstract][Full Text] [Related]
11. Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study. Xiao W; Huang X; Wang JH; Lin DR; Zhu Y; Chen C; Yang YH; Xiao J; Zhao LQ; Li JO; Cheung CY; Mise Y; Guo ZY; Du YF; Chen BB; Hu JX; Zhang K; Lin XS; Wen W; Liu YZ; Chen WR; Zhong YS; Lin HT Lancet Digit Health; 2021 Feb; 3(2):e88-e97. PubMed ID: 33509389 [TBL] [Abstract][Full Text] [Related]
12. Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images. Gerrits N; Elen B; Craenendonck TV; Triantafyllidou D; Petropoulos IN; Malik RA; De Boever P Sci Rep; 2020 Jun; 10(1):9432. PubMed ID: 32523046 [TBL] [Abstract][Full Text] [Related]
13. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Poplin R; Varadarajan AV; Blumer K; Liu Y; McConnell MV; Corrado GS; Peng L; Webster DR Nat Biomed Eng; 2018 Mar; 2(3):158-164. PubMed ID: 31015713 [TBL] [Abstract][Full Text] [Related]
14. Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China. Zhang L; Yuan M; An Z; Zhao X; Wu H; Li H; Wang Y; Sun B; Li H; Ding S; Zeng X; Chao L; Li P; Wu W PLoS One; 2020; 15(5):e0233166. PubMed ID: 32407418 [TBL] [Abstract][Full Text] [Related]
15. Performance of deep learning for detection of chronic kidney disease from retinal fundus photographs: A systematic review and meta-analysis. Tan Y; Ma Y; Rao S; Sun X Eur J Ophthalmol; 2024 Mar; 34(2):502-509. PubMed ID: 37671422 [TBL] [Abstract][Full Text] [Related]
16. Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs. Milea D; Najjar RP; Zhubo J; Ting D; Vasseneix C; Xu X; Aghsaei Fard M; Fonseca P; Vanikieti K; Lagrèze WA; La Morgia C; Cheung CY; Hamann S; Chiquet C; Sanda N; Yang H; Mejico LJ; Rougier M-B; Kho R; Thi Ha Chau T; Singhal S; Gohier P; Clermont-Vignal C; Cheng C-Y; Jonas JB; Yu-Wai-Man P; Fraser CL; Chen JJ; Ambika S; Miller NR; Liu Y; Newman NJ; Wong TY; Biousse V; N Engl J Med; 2020 Apr; 382(18):1687-1695. PubMed ID: 32286748 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs. Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760 [TBL] [Abstract][Full Text] [Related]
18. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. Lin D; Xiong J; Liu C; Zhao L; Li Z; Yu S; Wu X; Ge Z; Hu X; Wang B; Fu M; Zhao X; Wang X; Zhu Y; Chen C; Li T; Li Y; Wei W; Zhao M; Li J; Xu F; Ding L; Tan G; Xiang Y; Hu Y; Zhang P; Han Y; Li JO; Wei L; Zhu P; Liu Y; Chen W; Ting DSW; Wong TY; Chen Y; Lin H Lancet Digit Health; 2021 Aug; 3(8):e486-e495. PubMed ID: 34325853 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning for Image Quality Assessment of Fundus Images in Retinopathy of Prematurity. Coyner AS; Swan R; Brown JM; Kalpathy-Cramer J; Kim SJ; Campbell JP; Jonas KE; Ostmo S; Chan RVP; Chiang MF AMIA Annu Symp Proc; 2018; 2018():1224-1232. PubMed ID: 30815164 [TBL] [Abstract][Full Text] [Related]
20. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. Ahn JM; Kim S; Ahn KS; Cho SH; Lee KB; Kim US PLoS One; 2018; 13(11):e0207982. PubMed ID: 30481205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]